示例#1
0
    def testBootstrapAccuracy(self):
        if IGNORE_TEST:
            return
        model = """
            J1: S1 -> S2; k1*S1
            J2: S2 -> S3; k2*S2
           
            S1 = 1; S2 = 0; S3 = 0;
            k1 = 0; k2 = 0; 
        """
        columns = ["S1", "S3"]
        fitter = ModelFitter(model,
                             BENCHMARK_PATH, ["k1", "k2"],
                             selectedColumns=columns,
                             isPlot=IS_PLOT)
        fitter.fitModel()
        print(fitter.reportFit())
        print(fitter.getParameterMeans())

        fitter.bootstrap(numIteration=1000, reportInterval=500)
        #calcObservedFunc=ModelFitter.calcObservedTSNormal, std=0.01)
        fitter.plotParameterEstimatePairs(['k1', 'k2'], markersize=2)
        print("Mean: %s" % str(fitter.getParameterMeans()))
        print("Std: %s" % str(fitter.getParameterStds()))
        fitter.reportBootstrap()
示例#2
0
 def testWolfBug(self):
     if IGNORE_TEST:
         return
     trueParameterDct = {
         "J1_n": 4,
         "J4_kp": 76411,
         "J5_k": 80,
         "J6_k": 9.7,
         "J9_k": 28,
     }
     parametersToFit = [
         SBstoat.Parameter("J1_n", lower=1, value=1, upper=8),  # 4
         SBstoat.Parameter("J4_kp", lower=3600, value=36000,
                           upper=150000),  #76411
         SBstoat.Parameter("J5_k", lower=10, value=10, upper=160),  # 80
         SBstoat.Parameter("J6_k", lower=1, value=1, upper=10),  # 9.7
         SBstoat.Parameter("J9_k", lower=1, value=50, upper=50),  # 28
     ]
     ts = NamedTimeseries(csvPath=WOLF_DATA)
     methods = []
     for optName in ["differential_evolution", "leastsq"]:
         methods.append(SBstoat.OptimizerMethod(optName, {cn.MAX_NFEV: 10}))
     fitter = ModelFitter(WOLF_MODEL,
                          ts,
                          parametersToFit=parametersToFit,
                          fitterMethods=methods)
     fitter.fitModel()
     for name in [p.name for p in parametersToFit]:
         expected = trueParameterDct[name]
         actual = fitter.params.valuesdict()[name]
         self.assertLess(np.abs(np.log10(expected) - np.log10(actual)), 1.5)
         self.assertTrue(name in fitter.reportFit())
示例#3
0
    def evaluate(self, stdResiduals:float=0.1, relError:float=0.1,
          endTime:float=10.0, numPoint:int=30,
          fractionParameterDeviation:float=0.5,
          numIteration=NUM_BOOTSTRAP_ITERATION):
        """
        Evaluates model fitting accuracy and bootstrapping for model
 
        Parameters
        ----------
        stdResiduals: Standard deviations of variable used in constructing reiduals
        relError: relative error of parameter used in evaluation
        endTime: ending time of the simulation
        numPoint: number of points in the simulatin
        fractionParameterDeviation: fractional amount that the parameter can vary
        """
        # Construct synthetic observations
        if self.selectedColumns is None:
            data = self.roadRunner.simulate(0, endTime, numPoint)
        else:
            allColumns = list(self.selectedColumns)
            if not TIME in allColumns:
                allColumns.append(TIME)
            data = self.roadRunner.simulate(0, endTime, numPoint, allColumns)
        bracketTime = "[%s]" % TIME
        if bracketTime in data.colnames:
            # Exclude any column named '[time]'
            idx = data.colnames.index(bracketTime)
            dataArr = np.delete(data, idx, axis=1)
            colnames = list(data.colnames)
            colnames.remove(bracketTime)
            colnames = [s[1:-1] if s != TIME else s for s in colnames]
            simTS = NamedTimeseries(array=dataArr, colnames=colnames)
        else:
            simTS = NamedTimeseries(namedArray=data)
        synthesizer = ObservationSynthesizerRandomErrors(
              fittedTS=simTS, std=stdResiduals)
        observedTS = synthesizer.calculate()
        # Construct the parameter ranges
        parameterDct = {}
        for name in self.parameterValueDct.keys():
            lower = self.parameterValueDct[name]*(1 - fractionParameterDeviation)
            upper = self.parameterValueDct[name]*(1 + fractionParameterDeviation)
            value = np.random.uniform(lower, upper)
            parameterDct[name] = (lower, upper, value)
        # Create the fitter
        fitter = ModelFitter(self.roadRunner, observedTS,
              selectedColumns=self.selectedColumns, parameterDct=parameterDct,
              **self.kwargs)
        msg = "Fitting the parameters %s" % str(self.parameterValueDct.keys())
        self.logger.result(msg)
        # Evaluate the fit
        fitter.fitModel()
        self._recordResult(fitter.params, relError, self.fitModelResult)
        # Evaluate bootstrap
        fitter.bootstrap(numIteration=numIteration)
        if fitter.bootstrapResult is not None:
            if fitter.bootstrapResult.numSimulation > 0:
                self._recordResult(fitter.bootstrapResult.params,
                      relError, self.bootstrapResult)
示例#4
0
 def testFitSuite(self):
     if IGNORE_TEST:
         return
     self._init(numModel=1)
     fitter = ModelFitter(self.modelSpecifications[0],
           self.datasets[0],
           parametersToFit=self.parameterNamesCollection[0])
     fitter.fitModel()
     self.fitter.fitSuite()
     valuesDct1 = fitter.params.valuesdict()
     valuesDct2 = self.fitter.params.valuesdict()
     for name, value in valuesDct1.items():
         self.assertLess(np.abs(valuesDct2[name] - value), 0.5)
示例#5
0
 def testWolfBug(self):
     if IGNORE_TEST:
         return
     fullDct = {
        #"J1_n": (1, 1, 8),  # 4
        #"J4_kp": (3600, 36000, 150000),  #76411
        #"J5_k": (10, 10, 160),  # 80
        #"J6_k": (1, 1, 10),  # 9.7
        "J9_k": (1, 50, 50),   # 28
        }
     for parameter in fullDct.keys():
         logger = Logger(logLevel=LEVEL_MAX)
         logger = Logger()
         ts = NamedTimeseries(csvPath=WOLF_DATA)
         parameterDct = {parameter: fullDct[parameter]}
         fitter = ModelFitter(WOLF_MODEL, ts[0:100],
               parameterDct=parameterDct,
               logger=logger, fitterMethods=[
                      "differential_evolution", "leastsq"]) 
         fitter.fitModel()
         self.assertTrue("J9_k" in fitter.reportFit())
示例#6
0
def main(numIteration):
    """
    Calculates the time to run iterations of the benchmark.

    Parameters
    ----------
    numIteration: int
    
    Returns
    -------
    float: time in seconds
    """
    logger = logs.Logger(logLevel=logs.LEVEL_MAX, logPerformance=IS_TEST)
    fitter = ModelFitter(MODEL, BENCHMARK_PATH,
          ["k1", "k2"], selectedColumns=['S1', 'S3'], isPlot=IS_PLOT,
          logger=logger)
    fitter.fitModel()
    startTime = time.time()
    fitter.bootstrap(numIteration=numIteration, reportInterval=numIteration)
    elapsedTime = time.time() - startTime
    if IS_TEST:
        print(fitter.logger.formatPerformanceDF())
    fitter.plotFitAll()
    return elapsedTime
示例#7
0
SproutyFunc: -> Spry2; HillTime(V_0, K_0, n_0, t)


// Species IVs
Spry2 = 0;

// Parameter values
V_0 = 19.9059673;
K_0 = 10153.3568;
n_0 = 2.52290790;
t := time

end
''')

# sim = model.simulate(0, 7200, 7201)
# model.plot()
# quit()

fitter = ModelFitter(model,
                     "spry2_2a.txt", ["V_0", "K_0", "n_0"],
                     fitterMethods='differential_evolution',
                     parameterDct={
                         "V_0": (10, 20, 40),
                         "K_0": (1800, 6000, 20000),
                         "n_0": (1, 2, 12)
                     })
fitter.fitModel()
print(fitter.reportFit())
示例#8
0
 def _makeMikeModel(self, **kwargs):
     """Makes a model from Mike's data."""
     model = te.loada('''
     function Fi(v, ri, kf, kr, i, s, p, Kmi, Kms, Kmp, wi, ms, mp)
         ((ri+(1-ri)*(1/(1+i/Kmi)))^wi)*(kf*(s/Kms)^ms-kr*(p/Kmp)^mp)/((1+(s/Kms))^ms+(1+(p/Kmp))^mp-1)
     end
     function F0(v, kf, kr, s, p, Kms, Kmp, ms, mp)
         (kf*(s/Kms)^ms-kr*(p/Kmp)^mp)/((1+(s/Kms))^ms+(1+(p/Kmp))^mp-1)
     end
     function Fa(v, ra, kf, kr, a, s, p, Kma, Kms, Kmp, wa, ms, mp)
         ((ra+(1-ra)*((a/Kma)/(1+a/Kma)))^wa)*(kf*(s/Kms)^ms-kr*(p/Kmp)^mp)/((1+(s/Kms))^ms+(1+(p/Kmp))^mp-1)
     end
     function Fiii(v, ri1, ri2, ri3, kf, kr, i1, i2, i3, s, p, Kmi1, Kmi2, Kmi3, Kms, Kmp, wi1, wi2, wi3, ms, mp)
         ((ri1+(1-ri1)*(1/(1+i1/Kmi1)))^wi1) * ((ri2+(1-ri2)*(1/(1+i2/Kmi2)))^wi2) * ((ri3+(1-ri3)*(1/(1+i3/Kmi3)))^wi3) * (kf*(s/Kms)^ms-kr*(p/Kmp)^mp)/((1+(s/Kms))^ms+(1+(p/Kmp))^mp-1)
     end
     
     model modular_EGFR_current_128()
     
     
     // Reactions
     FreeLigand: -> L; Fa(v_0, ra_0, kf_0, kr_0, Lp, E, L, Kma_0, Kms_0, Kmp_0, wa_0, ms_0, mp_0);
     Phosphotyrosine: -> P; Fi(v_1, ri_1, kf_1, kr_1, Mig6, L, P, Kmi_1, Kms_1, Kmp_1, wi_1, ms_1, mp_1);
     Ras: -> R; Fiii(v_2, ri1_2, ri2_2, ri3_2, kf_2, kr_2, Spry2, P, E, P, R, Kmi1_2, Kmi2_2, Kmi3_2, Kms_2, Kmp_2, wi1_2, wi2_2, wi3_2, ms_2, mp_2);
     Erk: -> E; F0(v_3, kf_3, kr_3, R, E, Kms_3, Kmp_3, ms_3, mp_3);
     
     // Species IVs
     Lp = 100;
     E = 0;
     L = 1000;
     Mig6 = 100;
     P = 0;
     Spry2 = 10000;
     R = 0;
     
     // Parameter values
     v_0 = 1;
     ra_0 = 1;
     kf_0 = 1;
     kr_0 = 1;
     Kma_0 = 1;
     Kms_0 = 1;
     Kmp_0 = 1;
     wa_0 = 1;
     ms_0 = 1;
     mp_0 = 1;
     v_1 = 1;
     ri_1 = 1;
     kf_1 = 1;
     kr_1 = 1;
     Kmi_1 = 1;
     Kms_1 = 1;
     Kmp_1 = 1;
     wi_1 = 1;
     ms_1 = 1;
     mp_1 = 1;
     v_2 = 1;
     ri1_2 = 1;
     ri2_2 = 1;
     ri3_2 = 1;
     kf_2 = 1;
     kr_2 = 1;
     Kmi1_2 = 1;
     Kmi2_2 = 1;
     Kmi3_2 = 1;
     Kms_2 = 1;
     Kmp_2 = 1;
     wi1_2 = 1;
     wi2_2 = 1;
     wi3_2 = 1;
     ms_2 = 1;
     mp_2 = 1;
     v_3 = 1;
     kf_3 = 1;
     kr_3 = 1;
     Kms_3 = 1;
     Kmp_3 = 1;
     ms_3 = 1;
     mp_3 = 1;
 
     end
     ''')
     observedPath = os.path.join(DIR, "mike_bug.csv")
     fitter = ModelFitter(model, observedPath, [
      #"v_0", "ra_0", "kf_0", "kr_0", "Kma_0", "Kms_0", "Kmp_0", "wa_0", "ms_0",
      #"mp_0", "v_1", "ri_1", "kf_1", "kr_1", "Kmi_1", "Kms_1", "Kmp_1", "wi_1",
      #"ms_1", "mp_1", "v_2", "ri1_2", "ri2_2", "ri3_2", "kf_2", "kr_2",
      "Kmi1_2", "Kmi2_2", "Kmi3_2", "Kms_2", "Kmp_2", "wi1_2", "wi2_2", "wi3_2",
      "ms_2", "mp_2", "v_3", "kf_3", "kr_3", "Kms_3", "Kmp_3", "ms_3", "mp_3"],
      **kwargs)
     fitter.fitModel()
     return fitter