def main(): #todo this funciton and taining should become part of the library!! # sodass man nur mehr savepath und dataset angeben muss! msg.info("Traing a network for butadien", 2) msg.info("Fetching dataset ... ", 2) dataset = prep_dataset() save_path = "butadien/data/networks/networkS400.npy" user_input = msg.input( "This will overwrite the model at " + save_path + \ "Are you sure you want that? (y for yes)" ) if user_input.upper() != "Y": msg.info("Aborting", 2) return msg.info("Try to fetch current model") try: model = np.load(save_path, encoding="latin1") structure, weights, biases = model[0], model[1], model[2] network = EluFixedValue(structure, weights, biases) test_error = model[3] user_input = msg.input( "Model found with test error : " + str(test_error) + \ ". Do you want to continue to train it? (y for yes)" ) if user_input.upper() != "Y": msg.info("Creating new network", 2) model = None except: model = None if model is None: dim_triu = int(DIM * (DIM + 1) / 2) structure = [ dim_triu, int(dim_triu * 0.75), int(dim_triu * 0.5), dim_triu, dim_triu ] test_error = 1e10 msg.info("Train ... ", 2) network = EluTrNNN(structure) train_network(dataset, network, save_path, test_error) msg.info("All done. Bye bye..", 2)
def main(): msg.info("Traing a network for butadien", 2) msg.info("Fetching dataset ... ", 2) dataset = prep_dataset() msg.info("Train ... ", 2) trainer, network, sess = train_network(dataset) user_input = msg.input("Keep this network for butadien " + " (y for yes)?") if user_input.upper() == "Y": save_path = join("butadien/data", "network.npy") network.export(sess, save_path) msg.info("Exported network to: " + save_path, 2) else: msg.info("Network discarded ...", 2) msg.info("All done. Bye bye..", 2)
def main(molecule_type): msg.info("Traing a network for " + molecule_type, 2) msg.info("Fetching dataset ... ", 2) dataset = prep_dataset(molecule_type) msg.info("Train ... ", 2) trainer, network, sess = train_network(molecule_type, dataset) user_input = msg.input("Keep this network for " + molecule_type + " (y for yes)?") if user_input.upper() == "Y": save_path = \ join("cc2ai", molecule_type, "network_" + molecule_type + ".npy") network.export(sess, save_path) msg.info("Exported network to: " + save_path, 2) else: msg.info("Network discarded ...", 2) msg.info("All done. Bye bye..", 2)