def __init__(self, data: DataObject, random_seed: int, alpha=1):
     super(Hybrid3ScoreRecommender, self).__init__(data.urm_train)
     self.random_seed = random_seed
     self.slim = SLIMElasticNetRecommender(self.URM_train)
     self.rp3 = RP3betaRecommender(self.URM_train)
     self.itemcf = ItemKNNCFRecommender(self.URM_train)
     self.alpha = alpha
示例#2
0
 def __init__(self, data: DataObject, random_seed: int, alpha=1):
     super(Hybrid3ScoreRecommender, self).__init__(data.urm_train)
     self.random_seed = random_seed
     urm = sps.vstack([data.urm_train, data.icm_all_augmented.T])
     urm = urm.tocsr()
     self.slim = SLIMElasticNetRecommender(urm)
     self.rp3 = RP3betaRecommender(urm)
     self.alpha = alpha
示例#3
0
 def __init__(self, data: DataObject):
     super(Hybrid3ScoreSubRecommender, self).__init__(data.urm_train)
     urm = sps.vstack([data.urm_train, data.icm_all_augmented.T])
     urm = urm.tocsr()
     self.slim = SLIMElasticNetRecommender(urm)
     self.rp3 = RP3betaRecommender(self.URM_train)
     self.itemcf = ItemKNNCFRecommender(self.URM_train)
     self.random_seed = data.random_seed
    def fit(self, topK=160, shrink=22, normalize=True):

        SLIM = SLIMElasticNetRecommender(URM_train=self.URM)


        self.W_sparse_SLIM = SLIM.fit(l1_penalty=1e-5, l2_penalty=0, positive_only=True, topK=150, alpha=0.004156373761804666)

        similarity_object_CF = Compute_Similarity_Python(self.URM, shrink=10,
                                                         topK=800, normalize=normalize,
                                                         similarity="cosine")

        self.W_sparse_CF = similarity_object_CF.compute_similarity()

        similarity_object_CF_user = Compute_Similarity_Python(self.URM.T, shrink=0,
                                                              topK=400, normalize=normalize,
                                                              similarity="cosine")

        self.W_sparse_CF_user = similarity_object_CF_user.compute_similarity()
        # self.W_sparse_CF_user = normalize(self.W_sparse_CF_user)

        similarity_object_artist = Compute_Similarity_Python(self.ICM_art.T, shrink=5,
                                                             topK=topK, normalize=normalize,
                                                             similarity="cosine")

        self.W_sparse_art = similarity_object_artist.compute_similarity()

        similarity_object_album = Compute_Similarity_Python(self.ICM_Alb.T, shrink=5,
                                                            topK=topK, normalize=normalize,
                                                            similarity="cosine")

        self.W_sparse_alb = similarity_object_album.compute_similarity()

        # similarity_object_dur = Compute_Similarity_Python(self.ICM_Dur.T, shrink=shrink,
        #                                            topK=topK, normalize=normalize,
        #                                           similarity = similarity)

        #  self.W_sparse_dur = similarity_object_dur.compute_similarity()



        nItems = self.URM.shape[1]
        URMidf = sps.lil_matrix((self.URM.shape[0], self.URM.shape[1]))

        for i in range(0, self.URM.shape[0]):
            IDF_i = log(nItems / np.sum(self.URM[i]))
            URMidf[i] = np.multiply(self.URM[i], IDF_i)

        self.URM = URMidf.tocsr()

        self.URM_SLIM = self.URM.dot(self.W_sparse_SLIM)
        self.URM_CF = self.URM.dot(self.W_sparse_CF)
        self.URM_art = self.URM.dot(self.W_sparse_art)
        self.URM_alb = self.URM.dot(self.W_sparse_alb)
        self.URM_CF_user = self.W_sparse_CF_user.dot(self.URM)

        self.URM_final_hybrid = self.URM_CF *  1.25 + self.URM_art * 0.6 + self.URM_alb * 0.5 + self.URM_CF_user * 0.6 + self.URM_SLIM * 0.9

        self.pen_mask = np.ones(self.URM_final_hybrid.shape[1], dtype=int)
class Hybrid3ScoreRecommender(BaseRecommender):
    """Hybrid3ScoreRecommender recommender"""

    RECOMMENDER_NAME = "Hybrid3ScoreRecommender"

    def __init__(self, data: DataObject, random_seed: int, alpha=1):
        super(Hybrid3ScoreRecommender, self).__init__(data.urm_train)
        self.random_seed = random_seed
        self.slim = SLIMElasticNetRecommender(self.URM_train)
        self.rp3 = RP3betaRecommender(self.URM_train)
        self.itemcf = ItemKNNCFRecommender(self.URM_train)
        self.alpha = alpha

    def fit(self, alpha_beta_ratio=1, alpha_gamma_ratio=1):

        self.slim.load_model(
            '', 'SLIM_ElasticNetURM_seed=' + str(self.random_seed) +
            '_topK=100_l1_ratio=0.04705_alpha=0.00115_positive_only=True_max_iter=35'
        )
        self.rp3.fit(topK=20, alpha=0.16, beta=0.24)
        self.itemcf.fit(topK=22,
                        shrink=850,
                        similarity='jaccard',
                        feature_weighting='BM25')

        # self.alpha = 1
        self.beta = self.alpha * alpha_beta_ratio
        self.gamma = self.alpha * alpha_gamma_ratio

    def _compute_item_score(self, user_id_array, items_to_compute=None):
        # ATTENTION!
        # THIS METHOD WORKS ONLY IF user_id_array IS A SCALAR AND NOT AN ARRAY
        # TODO

        scores_slim = self.slim._compute_item_score(
            user_id_array=user_id_array)
        scores_rp3 = self.rp3._compute_item_score(user_id_array=user_id_array)
        scores_itemcf = self.itemcf._compute_item_score(
            user_id_array=user_id_array)

        # normalization
        slim_max = scores_slim.max()
        rp3_max = scores_rp3.max()
        itemcf_max = scores_itemcf.max()

        if not slim_max == 0:
            scores_slim /= slim_max
        if not rp3_max == 0:
            scores_rp3 /= rp3_max
        if not itemcf_max == 0:
            scores_itemcf /= itemcf_max

        scores_total = self.alpha * scores_slim + self.beta * scores_rp3 + self.gamma * scores_itemcf

        return scores_total
    def __init__(self, URM_train, ICM_train, submission=False, verbose=True, seed=1205):
        super(LinearHybrid001, self).__init__(URM_train, verbose = verbose)
        self.URM_train = URM_train
        self.ICM_train = ICM_train

        self.__rec1 = SLIMElasticNetRecommender(URM_train, verbose=False)
        self.__rec1_params = {'topK': 120, 'l1_ratio': 1e-5, 'alpha': 0.066}

        # seed 1205: 'topK': 620, 'shrink': 121, 'similarity': 'asymmetric', 'normalize': True, 'asymmetric_alpha': 0.5526988987666924
        self.__rec2 = ItemKNNCFRecommender(URM_train, verbose=False)
        self.__rec2_params = {'topK': 620, 'shrink': 121, 'similarity': 'asymmetric', 'normalize': True, 'asymmetric_alpha': 0.5526988987666924}

        # seed 1205: 'topK': 115, 'shrink': 1000, 'similarity': 'cosine', 'normalize': True, 'feature_weighting': 'BM25'
        self.__rec3 = ItemKNNCBFRecommender(URM_train, ICM_train, verbose=False)
        self.__rec3_params = {'topK': 115, 'shrink': 1000, 'similarity': 'cosine', 'normalize': True, 'feature_weighting': 'BM25'}

        self.__a = self.__b = self.__c = None
        self.seed=seed
        self.__submission=submission
示例#7
0
class Hybrid3ScoreSubRecommender(BaseRecommender):
    """Hybrid3ScoreSubRecommender recommender"""

    RECOMMENDER_NAME = "Hybrid3ScoreRecommender"

    def __init__(self, data: DataObject):
        super(Hybrid3ScoreSubRecommender, self).__init__(data.urm_train)
        urm = sps.vstack([data.urm_train, data.icm_all_augmented.T])
        urm = urm.tocsr()
        self.slim = SLIMElasticNetRecommender(urm)
        self.rp3 = RP3betaRecommender(self.URM_train)
        self.itemcf = ItemKNNCFRecommender(self.URM_train)
        self.random_seed = data.random_seed



    def fit(self, alpha_beta_ratio=1, alpha_gamma_ratio=1):
        try:
            self.slim.load_model('stored_recommenders/slim_elastic_net/',
                                 f'with_icm_{self.random_seed}_topK=100_l1_ratio=0.04705_alpha=0.00115_positive_only=True_max_iter=35')
        except:
            self.slim.fit(topK=100, l1_ratio=0.04705, alpha=0.00115, positive_only=True, max_iter=35)
            self.slim.save_model('stored_recommenders/slim_elastic_net/',
                                 f'with_icm_{self.random_seed}_topK=100_l1_ratio=0.04705_alpha=0.00115_positive_only=True_max_iter=35')

        self.rp3.fit(topK=20, alpha=0.16, beta=0.24)
        self.itemcf.fit(topK=22, shrink=850, similarity='jaccard', feature_weighting='BM25')

        self.alpha = 1
        self.beta = alpha_beta_ratio
        self.gamma = alpha_gamma_ratio


    def _compute_item_score(self, user_id_array, items_to_compute = None):
        # ATTENTION!
        # THIS METHOD WORKS ONLY IF user_id_array IS A SCALAR AND NOT AN ARRAY
        # TODO

        scores_slim = self.slim._compute_item_score(user_id_array=user_id_array)
        scores_rp3 = self.rp3._compute_item_score(user_id_array=user_id_array)
        scores_itemcf = self.itemcf._compute_item_score(user_id_array=user_id_array)

        # normalization
        slim_max = scores_slim.max()
        rp3_max = scores_rp3.max()
        itemcf_max = scores_itemcf.max()

        if not slim_max == 0:
            scores_slim /= slim_max
        if not rp3_max == 0:
            scores_rp3 /= rp3_max
        if not itemcf_max == 0:
            scores_itemcf /= itemcf_max

        scores_total = self.alpha * scores_slim + self.beta * scores_rp3 + self.gamma * scores_itemcf

        return scores_total
示例#8
0
class HybridScoreRecommender(BaseRecommender):
    """HybridScoreRecommender recommender"""

    RECOMMENDER_NAME = "HybridScoreRecommender"

    def __init__(self, data: DataObject, random_seed: int):
        super(HybridScoreRecommender, self).__init__(data.urm_train)
        self.random_seed = random_seed
        self.slim = SLIMElasticNetRecommender(self.URM_train)
        self.rp3 = RP3betaRecommender(self.URM_train)


    def fit(self, alpha=0.5):
        self.slim.load_model('', 'SLIM_ElasticNetURM_seed='
                             + str(self.random_seed) +
                             '_topK=100_l1_ratio=0.04705_alpha=0.00115_positive_only=True_max_iter=35')
        self.rp3.fit(topK=20, alpha=0.16, beta=0.24)
        self.alpha = alpha


    def _compute_item_score(self, user_id_array, items_to_compute = None):
        # ATTENTION!
        # THIS METHOD WORKS ONLY IF user_id_array IS A SCALAR AND NOT AN ARRAY
        # TODO

        scores_slim = self.slim._compute_item_score(user_id_array=user_id_array)
        scores_rp3 = self.rp3._compute_item_score(user_id_array=user_id_array)

        # normalization
        slim_max = scores_slim.max()
        rp3_max = scores_rp3.max()

        if not slim_max == 0:
            scores_slim /= slim_max
        if not rp3_max == 0:
            scores_rp3 /= rp3_max

        scores_total = self.alpha * scores_slim + (1 - self.alpha) * scores_rp3
        return scores_total
    def split_and_fit(self, random_seed):

        print(random_seed)

        data = self.data

        # Split policy
        new_urm_train = split_with_triple(data.urm_train, self.split_policy)[0]

        # concatenation with ICM
        new_urm_train = sps.vstack([new_urm_train, data.icm_all_augmented.T])

        rec = SLIMElasticNetRecommender(new_urm_train)

        rec.fit(topK=self.topK,
                l1_ratio=self.l1_ratio,
                alpha=self.alpha,
                positive_only=self.positive_only,
                max_iter=self.max_iter)

        rec.URM_train = data.urm_train

        return rec
示例#10
0
    def __init__(self, URM_train, ICM_train, submission=False, verbose=True, seed=1205):
        super(UserWiseHybrid008, self).__init__(URM_train, verbose=verbose)
        recommenders = {
            'rp3b': RP3betaRecommender(URM_train),
            'p3a': P3alphaRecommender(URM_train),
            'sen': SLIMElasticNetRecommender(URM_train),
            'sbpr': SLIM_BPR_Cython(URM_train),
            'icb': ItemKNNCBFRecommender(URM_train,ICM_train),
            'icf': ItemKNNCFRecommender(URM_train),
            'ucf': UserKNNCFRecommender(URM_train)
        }
        #print("Fitting rp3b...")
        #params = {'topK': 1000, 'alpha': 0.38192761611274967, 'beta': 0.0, 'normalize_similarity': False}
        #recommenders['rp3b'].fit(**params)
        #print("done.")
        print("Fitting p3a...")
        params = {'topK': 131, 'alpha': 0.33660811631883863, 'normalize_similarity': False}
        recommenders['p3a'].fit(**params)
        print("done.")
        print("Fitting sen...")
        params = {'topK': 992, 'l1_ratio': 0.004065081925341167, 'alpha': 0.003725005053334143}
        recommenders['sen'].fit(**params)
        print("done.")
        print("Fitting sbpr...")
        params = {'topK': 979, 'epochs': 130, 'symmetric': False, 'sgd_mode': 'adam', 'lambda_i': 0.004947329669424629,
                  'lambda_j': 1.1534760845071758e-05, 'learning_rate': 0.0001}
        recommenders['sbpr'].fit(**params)
        print("done.")
        print("Fitting icb...")
        params = {'topK': 65, 'shrink': 0, 'similarity': 'dice', 'normalize': True}
        recommenders['icb'].fit(**params)
        print("done.")
        print("Fitting icf...")
        params = {'topK': 55, 'shrink': 1000, 'similarity': 'asymmetric', 'normalize': True, 'asymmetric_alpha': 0.0}
        recommenders['icf'].fit(**params)
        print("done.")
        print("Fitting ucf...")
        params = {'topK': 190, 'shrink': 0, 'similarity': 'cosine', 'normalize': True}
        recommenders['ucf'].fit(**params)
        print("done.")

        self.__recommender_segmentation = [
            ((0,6), HiddenRecommender(URM_train, ICM_train, [
                recommenders['p3a'],
                recommenders['ucf'],
                recommenders['icb']
            ], submission=submission, verbose=verbose, seed=seed),
             {'alpha': 0.3987236515679141, 'l1_ratio': 0.15489605895390016}),

            ((6,16), HiddenRecommender(URM_train, ICM_train, [
                recommenders['ucf'],
                recommenders['icb'],
                recommenders['sen']
            ], submission=submission, verbose=verbose, seed=seed),
             {'alpha': 0.33535858857401674, 'l1_ratio': 0.4046400351885727}),

            ((16,-1), HiddenRecommender(URM_train, ICM_train, [
                recommenders['icb'],
                recommenders['sen'],
                recommenders['sbpr']
            ], submission=submission, verbose=verbose, seed=seed),
             {'alpha': 0.7321778261479165, 'l1_ratio': 0.15333729621089734}),
        ]
示例#11
0
class Hybrid3ScoreRecommender(BaseRecommender):
    """Hybrid3ScoreRecommender recommender"""

    RECOMMENDER_NAME = "Hybrid3ScoreRecommender"

    def __init__(self, data: DataObject, random_seed: int, alpha=1):
        super(Hybrid3ScoreRecommender, self).__init__(data.urm_train)
        self.random_seed = random_seed
        urm = sps.vstack([data.urm_train, data.icm_all_augmented.T])
        urm = urm.tocsr()
        self.slim = SLIMElasticNetRecommender(urm)
        self.rp3 = RP3betaRecommender(urm)
        self.alpha = alpha

    def fit(self, alpha_beta_ratio=1, alpha_gamma_ratio=1):
        try:
            self.slim.load_model(
                'stored_recommenders/slim_elastic_net/',
                f'with_icm_{self.random_seed}_topK=191_l1_ratio=0.0458089_alpha=0.000707_positive_only=True_max_iter=100'
            )
        except:
            self.slim.fit(topK=191,
                          l1_ratio=0.0458089,
                          alpha=0.000707,
                          positive_only=True,
                          max_iter=100)
            self.slim.save_model(
                'stored_recommenders/slim_elastic_net/',
                f'with_icm_{self.random_seed}_topK=191_l1_ratio=0.0458089_alpha=0.000707_positive_only=True_max_iter=100'
            )
        try:
            self.rp3.load_model(
                'stored_recommenders/rp3_beta/',
                f'with_icm_{self.random_seed}_topK=40_alpha=0.4_beta=0.2')
        except:
            self.rp3.fit(topK=40, alpha=0.4, beta=0.2)
            self.rp3.save_model(
                'stored_recommenders/rp3_beta/',
                f'with_icm_{self.random_seed}_topK=40_alpha=0.4_beta=0.2')

        # self.alpha = 1
        self.beta = self.alpha * alpha_beta_ratio
        self.gamma = self.alpha * alpha_gamma_ratio

    def _compute_item_score(self, user_id_array, items_to_compute=None):
        # ATTENTION!
        # THIS METHOD WORKS ONLY IF user_id_array IS A SCALAR AND NOT AN ARRAY
        # TODO

        scores_slim = self.slim._compute_item_score(
            user_id_array=user_id_array)
        scores_rp3 = self.rp3._compute_item_score(user_id_array=user_id_array)

        # normalization
        slim_max = scores_slim.max()
        rp3_max = scores_rp3.max()

        if not slim_max == 0:
            scores_slim /= slim_max
        if not rp3_max == 0:
            scores_rp3 /= rp3_max

        scores_total = self.alpha * scores_slim + self.beta * scores_rp3

        return scores_total
 def __init__(self, data: DataObject):
     super(HybridNicoSubmission, self).__init__(data.urm_train)
     self.data = data
     self.slim = SLIMElasticNetRecommender(data.urm)
     self.rp3 = RP3betaRecommender(data.urm)
示例#13
0
 def __init__(self, data: DataObject, random_seed: int):
     super(HybridScoreRecommender, self).__init__(data.urm_train)
     self.random_seed = random_seed
     self.slim = SLIMElasticNetRecommender(self.URM_train)
     self.rp3 = RP3betaRecommender(self.URM_train)
示例#14
0
import numpy as np
import os
import scipy.sparse as sps
from DataParser import DataParser
from Data_manager.split_functions.split_train_validation_random_holdout import \
    split_train_in_two_percentage_global_sample

from SLIM_ElasticNet.SLIMElasticNetRecommender import SLIMElasticNetRecommender

if __name__ == '__main__':
    parser = DataParser()
    URM_all = parser.get_URM_all()
    random_seed = 1205
    URM_train, URM_test = split_train_in_two_percentage_global_sample(URM_all, train_percentage=0.85, seed=random_seed)
    slim = SLIMElasticNetRecommender(URM_train)
    slim.fit(topK=140, l1_ratio=1e-5, alpha=0.386)
    slim.save_model('stored_recommenders/slim_elastic_net/',
                    f'best_{random_seed}_23_10_20')
 def __init__(self,
              URM_train,
              ICM_train,
              submission=False,
              verbose=True,
              seed=1205):
     super(UserWiseHybrid004, self).__init__(URM_train, verbose=verbose)
     self.__recommender_segmentation = [
         ((0, 3),
          HiddenRecommender(URM_train,
                            ICM_train,
                            [(RP3betaRecommender(URM_train), {
                                'topK': 1000,
                                'alpha': 0.38192761611274967,
                                'beta': 0.0,
                                'normalize_similarity': False
                            }),
                             (ItemKNNCFRecommender(URM_train), {
                                 'topK': 100,
                                 'shrink': 1000,
                                 'similarity': 'asymmetric',
                                 'normalize': True,
                                 'asymmetric_alpha': 0.0
                             }),
                             (ItemKNNCBFRecommender(URM_train, ICM_train), {
                                 'topK': 205,
                                 'shrink': 1000,
                                 'similarity': 'cosine',
                                 'normalize': True,
                                 'feature_weighting': 'BM25'
                             })],
                            submission=submission,
                            verbose=verbose,
                            seed=seed), {
                                'alpha': 0.40426999639005445,
                                'l1_ratio': 1.0
                            }),
         ((3, 5),
          HiddenRecommender(
              URM_train,
              ICM_train, [(ItemKNNCFRecommender(URM_train), {
                  'topK': 100,
                  'shrink': 1000,
                  'similarity': 'asymmetric',
                  'normalize': True,
                  'asymmetric_alpha': 0.0
              }),
                          (UserKNNCFRecommender(URM_train), {
                              'topK': 190,
                              'shrink': 0,
                              'similarity': 'cosine',
                              'normalize': True
                          }),
                          (ItemKNNCBFRecommender(URM_train, ICM_train), {
                              'topK': 205,
                              'shrink': 1000,
                              'similarity': 'cosine',
                              'normalize': True,
                              'feature_weighting': 'BM25'
                          })],
              submission=submission,
              verbose=verbose,
              seed=seed), {
                  'alpha': 0.767469300493861,
                  'l1_ratio': 0.7325725081659069
              }),
         ((5, 10),
          HiddenRecommender(
              URM_train,
              ICM_train, [(RP3betaRecommender(URM_train), {
                  'topK': 1000,
                  'alpha': 0.38192761611274967,
                  'beta': 0.0,
                  'normalize_similarity': False
              }),
                          (ItemKNNCFRecommender(URM_train), {
                              'topK': 100,
                              'shrink': 1000,
                              'similarity': 'asymmetric',
                              'normalize': True,
                              'asymmetric_alpha': 0.0
                          }),
                          (ItemKNNCBFRecommender(URM_train, ICM_train), {
                              'topK': 205,
                              'shrink': 1000,
                              'similarity': 'cosine',
                              'normalize': True,
                              'feature_weighting': 'BM25'
                          })],
              submission=submission,
              verbose=verbose,
              seed=seed), {
                  'alpha': 0.40426999639005445,
                  'l1_ratio': 1.0
              }),
         ((10, 17),
          HiddenRecommender(
              URM_train,
              ICM_train, [(P3alphaRecommender(URM_train), {
                  'topK': 131,
                  'alpha': 0.33660811631883863,
                  'normalize_similarity': False
              }),
                          (UserKNNCFRecommender(URM_train), {
                              'topK': 190,
                              'shrink': 0,
                              'similarity': 'cosine',
                              'normalize': True
                          }),
                          (ItemKNNCBFRecommender(URM_train, ICM_train), {
                              'topK': 205,
                              'shrink': 1000,
                              'similarity': 'cosine',
                              'normalize': True,
                              'feature_weighting': 'BM25'
                          })],
              submission=submission,
              verbose=verbose,
              seed=seed), {
                  'alpha': 0.37776131907747645,
                  'l1_ratio': 0.44018901104481
              }),
         ((17, 100),
          HiddenRecommender(
              URM_train,
              ICM_train, [(ItemKNNCFRecommender(URM_train), {
                  'topK': 100,
                  'shrink': 1000,
                  'similarity': 'asymmetric',
                  'normalize': True,
                  'asymmetric_alpha': 0.0
              }),
                          (ItemKNNCBFRecommender(URM_train, ICM_train), {
                              'topK': 205,
                              'shrink': 1000,
                              'similarity': 'cosine',
                              'normalize': True,
                              'feature_weighting': 'BM25'
                          }),
                          (SLIMElasticNetRecommender(URM_train), {
                              'topK': 992,
                              'l1_ratio': 0.004065081925341167,
                              'alpha': 0.003725005053334143
                          })],
              submission=submission,
              verbose=verbose,
              seed=seed), {
                  'alpha': 0.7783657178315921,
                  'l1_ratio': 0.9570845000744118
              }),
         ((100, -1),
          HiddenRecommender(
              URM_train,
              ICM_train, [(P3alphaRecommender(URM_train), {
                  'topK': 131,
                  'alpha': 0.33660811631883863,
                  'normalize_similarity': False
              }),
                          (UserKNNCFRecommender(URM_train), {
                              'topK': 190,
                              'shrink': 0,
                              'similarity': 'cosine',
                              'normalize': True
                          }),
                          (ItemKNNCBFRecommender(URM_train, ICM_train), {
                              'topK': 205,
                              'shrink': 1000,
                              'similarity': 'cosine',
                              'normalize': True,
                              'feature_weighting': 'BM25'
                          })],
              submission=submission,
              verbose=verbose,
              seed=seed), {
                  'alpha': 0.37776131907747645,
                  'l1_ratio': 0.44018901104481
              }),
     ]
def read_data_split_and_search():
    """
    This function provides a simple example on how to tune parameters of a given algorithm

    The BayesianSearch object will save:
        - A .txt file with all the cases explored and the recommendation quality
        - A _best_model file which contains the trained model and can be loaded with recommender.load_model()
        - A _best_parameter file which contains a dictionary with all the fit parameters, it can be passed to recommender.fit(**_best_parameter)
        - A _best_result_validation file which contains a dictionary with the results of the best solution on the validation
        - A _best_result_test file which contains a dictionary with the results, on the test set, of the best solution chosen using the validation set
    """

    seed = 1205
    parser = DataParser()

    URM_all = parser.get_URM_all()
    ICM_obj = parser.get_ICM_all()

    # SPLIT TO GET TEST PARTITION
    URM_train, URM_test = split_train_in_two_percentage_global_sample(
        URM_all, train_percentage=0.90, seed=seed)

    # SPLIT TO GET THE HYBRID VALID PARTITION
    URM_train, URM_valid_hybrid = split_train_in_two_percentage_global_sample(
        URM_train, train_percentage=0.85, seed=seed)

    # SPLIT TO GET THE sub_rec VALID PARTITION
    URM_train_bis, URM_valid_sub = split_train_in_two_percentage_global_sample(
        URM_train, train_percentage=0.85, seed=seed)

    collaborative_algorithm_list = [
        #EASE_R_Recommender
        #PipeHybrid001,
        #Random,
        #TopPop,
        #P3alphaRecommender,
        #RP3betaRecommender,
        #ItemKNNCFRecommender,
        #UserKNNCFRecommender,
        #MatrixFactorization_BPR_Cython,
        #MatrixFactorization_FunkSVD_Cython,
        #PureSVDRecommender,
        #NMFRecommender,
        #PureSVDItemRecommender
        #SLIM_BPR_Cython,
        #SLIMElasticNetRecommender
        #IALSRecommender
        #MF_MSE_PyTorch
        #MergedHybrid000
        #LinearHybrid002ggg
        HybridCombinationSearch
    ]

    content_algorithm_list = [
        #ItemKNNCBFRecommender
    ]

    from Base.Evaluation.Evaluator import EvaluatorHoldout

    evaluator_valid_sub = EvaluatorHoldout(URM_valid_sub, cutoff_list=[10])
    evaluator_valid_hybrid = EvaluatorHoldout(URM_valid_hybrid,
                                              cutoff_list=[10])
    evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[10])
    """
        # TODO: setta I GIUSTI EVALUATOR QUI!!!!
    runParameterSearch_Content_partial = partial(runParameterSearch_Content,
                                                 URM_train=URM_train,
                                                 ICM_object=ICM_obj,
                                                 ICM_name='1BookFeatures',
                                                 n_cases = 50,
                                                 n_random_starts = 20,
                                                 evaluator_validation= evaluator_valid_sub,
                                                 evaluator_test = evaluator_valid_hybrid,
                                                 metric_to_optimize = "MAP",
                                                 output_folder_path=output_folder_path,
                                                 parallelizeKNN = False,
                                                 allow_weighting = True,
                                                 #similarity_type_list = ['cosine']
                                                 )
    pool = multiprocessing.Pool(processes=int(multiprocessing.cpu_count()), maxtasksperchild=1)
    pool.map(runParameterSearch_Content_partial, content_algorithm_list)
    """
    print("Rp3beta training...")
    rp3b = RP3betaRecommender(URM_train, verbose=False)
    rp3b_params = {
        'topK': 1000,
        'alpha': 0.38192761611274967,
        'beta': 0.0,
        'normalize_similarity': False
    }
    rp3b.fit(**rp3b_params)
    print("Done")
    print("P3alpha training...")
    p3a = P3alphaRecommender(URM_train, verbose=False)
    p3a_params = {
        'topK': 131,
        'alpha': 0.33660811631883863,
        'normalize_similarity': False
    }
    p3a.fit(**p3a_params)
    print("Done")
    print("ItemKnnCF training...")
    icf = ItemKNNCFRecommender(URM_train, verbose=False)
    icf_params = {
        'topK': 100,
        'shrink': 1000,
        'similarity': 'asymmetric',
        'normalize': True,
        'asymmetric_alpha': 0.0
    }
    icf.fit(**icf_params)
    print("Done")
    print("UserKnnCF training...")
    ucf = UserKNNCFRecommender(URM_train, verbose=False)
    ucf_params = {
        'topK': 190,
        'shrink': 0,
        'similarity': 'cosine',
        'normalize': True
    }
    ucf.fit(**ucf_params)
    print("Done")
    print("ItemKnnCBF training...")
    icb = ItemKNNCBFRecommender(URM_train, ICM_obj, verbose=False)
    icb_params = {
        'topK': 205,
        'shrink': 1000,
        'similarity': 'cosine',
        'normalize': True,
        'feature_weighting': 'BM25'
    }
    icb.fit(**icb_params)
    print("Done")
    print("SlimBPR training...")
    sbpr = SLIM_BPR_Cython(URM_train, verbose=False)
    sbpr_params = {
        'topK': 979,
        'epochs': 130,
        'symmetric': False,
        'sgd_mode': 'adam',
        'lambda_i': 0.004947329669424629,
        'lambda_j': 1.1534760845071758e-05,
        'learning_rate': 0.0001
    }
    sbpr.fit(**sbpr_params)
    print("Done")
    print("SlimElasticNet training...")
    sen = SLIMElasticNetRecommender(URM_train, verbose=False)
    sen_params = {
        'topK': 992,
        'l1_ratio': 0.004065081925341167,
        'alpha': 0.003725005053334143
    }
    sen.fit(**sen_params)
    print("Done")

    list_recommender = [rp3b, p3a, icf, ucf, icb, sen, sbpr]
    list_already_seen = [rp3b, p3a, icf, ucf, icb]

    for rec_perm in combinations(list_recommender, 3):

        if rec_perm not in combinations(list_already_seen, 3):

            recommender_names = '_'.join(
                [r.RECOMMENDER_NAME for r in rec_perm])
            output_folder_path = "result_experiments_v3/seed_" + str(
                seed) + '/' + recommender_names + '/'

            # If directory does not exist, create
            if not os.path.exists(output_folder_path):
                os.makedirs(output_folder_path)

            # TODO: setta I GIUSTI EVALUATOR QUI!!!!
            runParameterSearch_Collaborative_partial = partial(
                runParameterSearch_Collaborative,
                URM_train=URM_train,
                ICM_train=ICM_obj,
                metric_to_optimize="MAP",
                n_cases=50,
                n_random_starts=20,
                evaluator_validation_earlystopping=evaluator_valid_hybrid,
                evaluator_validation=evaluator_valid_hybrid,
                evaluator_test=evaluator_test,
                output_folder_path=output_folder_path,
                allow_weighting=False,
                #similarity_type_list = ["cosine", 'jaccard'],
                parallelizeKNN=False,
                list_rec=rec_perm)
            pool = multiprocessing.Pool(processes=int(
                multiprocessing.cpu_count()),
                                        maxtasksperchild=1)
            pool.map(runParameterSearch_Collaborative_partial,
                     collaborative_algorithm_list)
示例#17
0
    def __init__(self,
                 URM_train,
                 ICM_train,
                 submission=False,
                 verbose=True,
                 seed=1205):
        super(UserWiseHybrid005, self).__init__(URM_train, verbose=verbose)
        recommenders = {
            'rp3b': RP3betaRecommender(URM_train),
            'p3a': P3alphaRecommender(URM_train),
            'sen': SLIMElasticNetRecommender(URM_train),
            'sbpr': SLIM_BPR_Cython(URM_train),
            'icb': ItemKNNCBFRecommender(URM_train, ICM_train),
            'icf': ItemKNNCFRecommender(URM_train),
            'ucf': UserKNNCFRecommender(URM_train)
        }
        print("Fitting rp3b...")
        params = {
            'topK': 1000,
            'alpha': 0.38192761611274967,
            'beta': 0.0,
            'normalize_similarity': False
        }
        recommenders['rp3b'].fit(**params)
        print("done.")
        print("Fitting p3a...")
        params = {
            'topK': 131,
            'alpha': 0.33660811631883863,
            'normalize_similarity': False
        }
        recommenders['p3a'].fit(**params)
        print("done.")
        print("Fitting sen...")
        params = {
            'topK': 992,
            'l1_ratio': 0.004065081925341167,
            'alpha': 0.003725005053334143
        }
        recommenders['sen'].fit(**params)
        print("done.")
        #print("Fitting sbpr...")
        #params = {'topK': 979, 'epochs': 130, 'symmetric': False, 'sgd_mode': 'adam', 'lambda_i': 0.004947329669424629,
        #          'lambda_j': 1.1534760845071758e-05, 'learning_rate': 0.0001}
        #recommenders['sbpr'].fit(**params)
        print("done.")
        print("Fitting icb...")
        params = {
            'topK': 65,
            'shrink': 0,
            'similarity': 'dice',
            'normalize': True
        }
        recommenders['icb'].fit(**params)
        print("done.")
        print("Fitting icf...")
        params = {
            'topK': 55,
            'shrink': 1000,
            'similarity': 'asymmetric',
            'normalize': True,
            'asymmetric_alpha': 0.0
        }
        recommenders['icf'].fit(**params)
        print("done.")
        print("Fitting ucf...")
        params = {
            'topK': 190,
            'shrink': 0,
            'similarity': 'cosine',
            'normalize': True
        }
        recommenders['ucf'].fit(**params)
        print("done.")

        self.__recommender_segmentation = [
            ((0, 3),
             HiddenRecommender(URM_train,
                               ICM_train, [
                                   recommenders['rp3b'], recommenders['icf'],
                                   recommenders['icb']
                               ],
                               submission=submission,
                               verbose=verbose,
                               seed=seed), {
                                   'alpha': 0.4577946628581237,
                                   'l1_ratio': 0.7434539743766688
                               }),
            ((3, 5),
             HiddenRecommender(URM_train,
                               ICM_train, [
                                   recommenders['p3a'], recommenders['ucf'],
                                   recommenders['icb']
                               ],
                               submission=submission,
                               verbose=verbose,
                               seed=seed), {
                                   'alpha': 0.3987236515679141,
                                   'l1_ratio': 0.15489605895390016
                               }),
            ((5, 10),
             HiddenRecommender(URM_train,
                               ICM_train, [
                                   recommenders['rp3b'], recommenders['icb'],
                                   recommenders['sen']
                               ],
                               submission=submission,
                               verbose=verbose,
                               seed=seed), {
                                   'alpha': 1.0,
                                   'l1_ratio': 0.3951763029766836
                               }),
            ((10, 17),
             HiddenRecommender(URM_train,
                               ICM_train, [
                                   recommenders['p3a'], recommenders['icb'],
                                   recommenders['sen']
                               ],
                               submission=submission,
                               verbose=verbose,
                               seed=seed), {
                                   'alpha': 0.9999772418587548,
                                   'l1_ratio': 0.28511052552468436
                               }),
            ((17, 30),
             HiddenRecommender(URM_train,
                               ICM_train, [
                                   recommenders['icf'], recommenders['icb'],
                                   recommenders['sen']
                               ],
                               submission=submission,
                               verbose=verbose,
                               seed=seed), {
                                   'alpha': 0.21686976560272436,
                                   'l1_ratio': 0.4598014054291886
                               }),
            ((30, 100),
             HiddenRecommender(URM_train,
                               ICM_train, [
                                   recommenders['ucf'], recommenders['icb'],
                                   recommenders['sen']
                               ],
                               submission=submission,
                               verbose=verbose,
                               seed=seed), {
                                   'alpha': 0.33535858857401674,
                                   'l1_ratio': 0.4046400351885727
                               }),
            ((100, 200),
             HiddenRecommender(URM_train,
                               ICM_train, [
                                   recommenders['icf'], recommenders['icb'],
                                   recommenders['sen']
                               ],
                               submission=submission,
                               verbose=verbose,
                               seed=seed), {
                                   'alpha': 0.21686976560272436,
                                   'l1_ratio': 0.4598014054291886
                               }),
            ((200, -1),
             HiddenRecommender(URM_train,
                               ICM_train, [
                                   recommenders['p3a'], recommenders['icb'],
                                   recommenders['sen']
                               ],
                               submission=submission,
                               verbose=verbose,
                               seed=seed), {
                                   'alpha': 0.9999772418587548,
                                   'l1_ratio': 0.28511052552468436
                               }),
        ]
示例#18
0
class HybridNico(BaseRecommender):
    """Hybrid100AlphaRecommender recommender"""

    RECOMMENDER_NAME = "HybridNico"

    def __init__(self, data: DataObject, random_seed: int):
        super(HybridNico, self).__init__(data.urm_train)
        self.random_seed = random_seed
        self.slim = SLIMElasticNetRecommender(self.URM_train)
        self.rp3 = RP3betaRecommender(self.URM_train)
        self.number_of_users = data.number_of_users

    def fit(self, alpha=0.5):
        self.slim.load_model(
            '', 'SLIM_ElasticNetURM_seed=' + str(self.random_seed) +
            '_topK=100_l1_ratio=0.04705_alpha=0.00115_positive_only=True_max_iter=35'
        )
        self.rp3.fit(topK=20, alpha=0.16, beta=0.24)

        path_slim = 'slim_item_scores_random_seed=' + str(self.random_seed)
        path_rp3 = 'slim_item_scores_random_seed=' + str(self.random_seed)

        # cache = (os.path.exists(path_slim + '.npy') and os.path.exists(path_rp3 + '.npy'))
        cache = False

        print("cache is hardcoded to:")
        print(cache)

        if cache:
            self.fit_cached(path_slim=path_slim,
                            path_rp3=path_rp3,
                            alpha=alpha)
        else:
            self.fit_no_cached(path_slim=path_slim,
                               path_rp3=path_rp3,
                               alpha=alpha)

    def fit_cached(self, path_slim, path_rp3, alpha=0.5):
        mat_scores_slim = np.load(path_slim + '.npy')
        mat_scores_rp3 = np.load(path_rp3 + '.npy')

        self.score_matrix = alpha * mat_scores_slim + (1 -
                                                       alpha) * mat_scores_rp3

    def fit_no_cached(self, path_slim, path_rp3, alpha=0.5):

        user_id_array = np.array(range(self.number_of_users))

        self.mat_scores_slim = self.slim._compute_item_score(
            user_id_array=user_id_array)
        self.mat_scores_rp3 = self.rp3._compute_item_score(
            user_id_array=user_id_array)

        # normalization
        self.mat_scores_slim /= self.mat_scores_slim.max()
        self.mat_scores_rp3 /= self.mat_scores_rp3.max()

        # np.save(path_slim, arr=mat_scores_slim)
        # np.save(path_rp3, arr=mat_scores_rp3)

        self.score_matrix = alpha * self.mat_scores_slim + (
            1 - alpha) * self.mat_scores_rp3

    def _compute_item_score(self, user_id_array, items_to_compute=None):
        return self.score_matrix[user_id_array]
示例#19
0
class LinearHybrid001(BaseItemSimilarityMatrixRecommender):
    RECOMMENDER_NAME = "LinearHybrid001"

    # set the seed equal to the one of the parameter search!!!!
    def __init__(self, URM_train, ICM_train, submission=False, verbose=True, seed=1205):
        super(LinearHybrid001, self).__init__(URM_train, verbose = verbose)
        self.URM_train = URM_train
        self.ICM_train = ICM_train

        self.__rec1 = SLIMElasticNetRecommender(URM_train, verbose=False)
        self.__rec1_params = {'topK': 120, 'l1_ratio': 1e-5, 'alpha': 0.066}

        # seed 1205: 'topK': 620, 'shrink': 121, 'similarity': 'asymmetric', 'normalize': True, 'asymmetric_alpha': 0.5526988987666924
        self.__rec2 = ItemKNNCFRecommender(URM_train, verbose=False)
        self.__rec2_params = {'topK': 620, 'shrink': 121, 'similarity': 'asymmetric', 'normalize': True, 'asymmetric_alpha': 0.5526988987666924}

        # seed 1205: 'topK': 115, 'shrink': 1000, 'similarity': 'cosine', 'normalize': True, 'feature_weighting': 'BM25'
        self.__rec3 = ItemKNNCBFRecommender(URM_train, ICM_train, verbose=False)
        self.__rec3_params = {'topK': 115, 'shrink': 1000, 'similarity': 'cosine', 'normalize': True, 'feature_weighting': 'BM25'}

        self.__a = self.__b = self.__c = None
        self.seed=seed
        self.__submission=submission

    def fit(self, alpha=0.5, l1_ratio=0.5):
        self.__a = alpha * l1_ratio
        self.__b = alpha - self.__a
        self.__c = 1 - self.__a - self.__b
        if not self.__submission:
            try:
                self.__rec1.load_model('stored_recommenders/'+self.__rec1.RECOMMENDER_NAME+'/', f'seed_{str(self.seed)}_best_for_LinearHybrid001')
                print(f"{self.__rec1.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec1.RECOMMENDER_NAME} ...")
                self.__rec1.fit(**self.__rec1_params)
                print(f"done.")
                self.__rec1.save_model('stored_recommenders/'+self.__rec1.RECOMMENDER_NAME+'/', f'seed_{str(self.seed)}_best_for_LinearHybrid001')

            try:
                self.__rec2.load_model('stored_recommenders/'+self.__rec2.RECOMMENDER_NAME+'/', f'seed_{str(self.seed)}_best_for_LinearHybrid001')
                print(f"{self.__rec2.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec2.RECOMMENDER_NAME} ...")
                self.__rec2.fit(**self.__rec2_params)
                print(f"done.")
                self.__rec2.save_model('stored_recommenders/'+self.__rec2.RECOMMENDER_NAME+'/', f'seed_{str(self.seed)}_best_for_LinearHybrid001')

            try:
                self.__rec3.load_model('stored_recommenders/'+self.__rec3.RECOMMENDER_NAME+'/', f'seed_{str(self.seed)}_best_for_LinearHybrid001')
                print(f"{self.__rec3.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec3.RECOMMENDER_NAME} ...")
                self.__rec3.fit(**self.__rec3_params)
                print(f"done.")
                self.__rec3.save_model('stored_recommenders/'+self.__rec3.RECOMMENDER_NAME+'/', f'seed_{str(self.seed)}_best_for_LinearHybrid001')
        else:
            self.__rec1.fit(**self.__rec1_params)
            self.__rec2.fit(**self.__rec2_params)
            self.__rec3.fit(**self.__rec3_params)

    def _compute_item_score(self, user_id_array, items_to_compute=None):

        item_weights_1 = self.__rec1._compute_item_score(user_id_array)
        item_weights_2 = self.__rec2._compute_item_score(user_id_array)
        item_weights_3 = self.__rec3._compute_item_score(user_id_array)

        item_weights = item_weights_1 * self.__a + item_weights_2 * self.__b + item_weights_3 * self.__c

        return item_weights

    def save_model(self, folder_path, file_name = None):
        if file_name is None:
            file_name = self.RECOMMENDER_NAME

        self._print("Saving model in file '{}'".format(folder_path + file_name))
        dataIO = DataIO(folder_path=folder_path)
        dataIO.save_data(file_name=file_name, data_dict_to_save = {})
        self._print("Saving complete")
示例#20
0
    def __init__(self,
                 URM_train,
                 ICM_train,
                 submission=False,
                 verbose=True,
                 seed=1205):
        super(LinearOverMerged001, self).__init__(URM_train, verbose=verbose)
        self.URM_train = URM_train
        self.ICM_train = ICM_train
        self.__submission = submission
        self.__rec1 = UserKNNCFRecommender(URM_train, verbose=False)
        self.__rec1_params = {
            'topK': 190,
            'shrink': 0,
            'similarity': 'cosine',
            'normalize': True
        }
        self.seed = seed

        icb = ItemKNNCBFRecommender(URM_train, ICM_train, verbose=False)
        icb_params = {
            'topK': 65,
            'shrink': 0,
            'similarity': 'dice',
            'normalize': True
        }
        rp3b = RP3betaRecommender(URM_train, verbose=False)
        rp3b_params = {
            'topK': 1000,
            'alpha': 0.38192761611274967,
            'beta': 0.0,
            'normalize_similarity': False
        }
        sen = SLIMElasticNetRecommender(URM_train, verbose=False)
        sen_params = {
            'topK': 992,
            'l1_ratio': 0.004065081925341167,
            'alpha': 0.003725005053334143
        }

        if not self.__submission:
            try:
                icb.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{icb.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{icb.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {icb.RECOMMENDER_NAME} ...")
                icb.fit(**icb_params)
                print(f"done.")
                icb.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{icb.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
            try:
                rp3b.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{rp3b.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{rp3b.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {rp3b.RECOMMENDER_NAME} ...")
                rp3b.fit(**rp3b_params)
                print(f"done.")
                rp3b.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{rp3b.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
            try:
                sen.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{sen.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{sen.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {sen.RECOMMENDER_NAME} ...")
                sen.fit(**sen_params)
                print(f"done.")
                sen.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{sen.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
        else:
            icb.fit(**icb_params)
            rp3b.fit(**rp3b_params)
            sen.fit(**sen_params)

        self.__rec2 = HiddenMergedRecommender(URM_train,
                                              ICM_train, [icb, rp3b, sen],
                                              verbose=False)
        self.__rec2_params = {
            'alpha': 0.6355738550417837,
            'l1_ratio': 0.6617849709204384,
            'topK': 538
        }

        self.__a = self.__b = None
示例#21
0
from SLIM_ElasticNet.SLIMElasticNetRecommender import SLIMElasticNetRecommender
import numpy as np

if __name__ == '__main__':
    seed = 1205

    parser = DataParser()
    URM_all = parser.get_URM_all()
    ICM_all = parser.get_ICM_all()

    URM_train, URM_test = split_train_in_two_percentage_global_sample(
        URM_all, train_percentage=0.85, seed=seed)

    evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[10])
    rec1 = ItemKNNCBFRecommender(URM_train, ICM_all)
    rec2 = SLIMElasticNetRecommender(URM_train)

    # 'topK': 40, 'shrink': 1000, 'similarity': 'cosine', 'normalize': True, 'feature_weighting': 'BM25'
    rec1.fit(topK=40,
             shrink=1000,
             similarity='cosine',
             feature_weighting='BM25')

    # topK': 140, 'l1_ratio': 1e-05, 'alpha': 0.386
    rec2.fit(topK=140, l1_ratio=1e-5, alpha=0.386)
    print("recomenders are ready")
    merged_recommender = MergedHybrid000(URM_train,
                                         content_recommender=rec1,
                                         collaborative_recommender=rec2)
    for alpha in np.arange(0, 1, 0.1):
        merged_recommender.fit(alpha)
示例#22
0
 def __init__(self, data: DataObject, random_seed: int):
     super(HybridNico, self).__init__(data.urm_train)
     self.random_seed = random_seed
     self.slim = SLIMElasticNetRecommender(self.URM_train)
     self.rp3 = RP3betaRecommender(self.URM_train)
     self.number_of_users = data.number_of_users
class HybridNicoSubmission(BaseRecommender):
    """HybridNicoSubmission recommender"""

    RECOMMENDER_NAME = "HybridNicoSubmission"

    def __init__(self, data: DataObject):
        super(HybridNicoSubmission, self).__init__(data.urm_train)
        self.data = data
        self.slim = SLIMElasticNetRecommender(data.urm)
        self.rp3 = RP3betaRecommender(data.urm)

    def fit(self, alpha=0.5):
        self.slim.load_model(
            '',
            'SLIM_ElasticNetFULL_URM_topK=100_l1_ratio=0.04705_alpha=0.00115_positive_only=True_max_iter=35'
        )
        self.rp3.fit(topK=20, alpha=0.16, beta=0.24)

        self.fit_no_cached(path_slim=None, path_rp3=None, alpha=alpha)

    def fit_cached(self, path_slim, path_rp3, alpha=0.5):
        mat_scores_slim = np.load(path_slim + '.npy')
        mat_scores_rp3 = np.load(path_rp3 + '.npy')

        self.score_matrix = alpha * mat_scores_slim + (1 -
                                                       alpha) * mat_scores_rp3

    def fit_no_cached(self, path_slim, path_rp3, alpha=0.5):

        n_users = self.data.number_of_users
        n_item = self.data.number_of_items
        list_slim = []
        list_rp3 = []
        for u_id in range(n_users):
            # if u_id % 1000 == 0:
            #     print('user: {} / {}'.format(u_id, n_users - 1))
            list_slim.append(
                np.squeeze(self.slim._compute_item_score(user_id_array=u_id)))
            list_rp3.append(
                np.squeeze(self.rp3._compute_item_score(user_id_array=u_id)))

        mat_scores_slim = np.stack(list_slim, axis=0)
        mat_scores_rp3 = np.stack(list_rp3, axis=0)
        '''print("slim scores stats:")
        print("min = {}".format(mat_scores_slim.min()))
        print("max = {}".format(mat_scores_slim.max()))
        print("average = {}".format(mat_scores_slim.mean()))


        print("rp3 scores stats:")
        print("min = {}".format(mat_scores_rp3.min()))
        print("max = {}".format(mat_scores_rp3.max()))
        print("average = {}".format(mat_scores_rp3.mean()))'''

        # normalization
        mat_scores_slim /= mat_scores_slim.max()
        mat_scores_rp3 /= mat_scores_rp3.max()

        self.mat_scores_slim = mat_scores_slim
        self.mat_scores_rp3 = mat_scores_rp3
        '''print("slim scores stats:")
        print("min = {}".format(mat_scores_slim.min()))
        print("max = {}".format(mat_scores_slim.max()))
        print("average = {}".format(mat_scores_slim.mean()))

        print("rp3 scores stats:")
        print("min = {}".format(mat_scores_rp3.min()))
        print("max = {}".format(mat_scores_rp3.max()))
        print("average = {}".format(mat_scores_rp3.mean()))'''

        # np.save(path_slim, arr=mat_scores_slim)
        # np.save(path_rp3, arr=mat_scores_rp3)

        self.score_matrix = alpha * mat_scores_slim + (1 -
                                                       alpha) * mat_scores_rp3

    def _compute_item_score(self, user_id_array, items_to_compute=None):
        return self.score_matrix[user_id_array]
示例#24
0
    evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[10])

    itemKNNCF = ItemKNNCFRecommender(URM_train)
    itemKNNCF.fit(shrink=24, topK=10)

    recommenderCYTHON = SLIM_BPR_Cython(URM_train, recompile_cython=False)
    recommenderCYTHON.fit(epochs=2000,
                          batch_size=200,
                          sgd_mode='sdg',
                          learning_rate=1e-5,
                          topK=10)

    recommenderCB = ItemKNNCBFRecommender(URM_train, ICM_all)
    recommenderCB.fit(shrink=24, topK=10)

    recommenderELASTIC = SLIMElasticNetRecommender(URM_train)
    # recommenderELASTIC.fit(topK=10)
    # recommenderELASTIC.save_model('model/', file_name='SLIM_ElasticNet')
    recommenderELASTIC.load_model('model/', file_name='SLIM_ElasticNet_train')

    # recommenderAlphaGRAPH = P3alphaRecommender(URM_train)
    # recommenderAlphaGRAPH.fit(topK=10, alpha=0.22, implicit=True, normalize_similarity=True)

    recommenderBetaGRAPH = RP3betaRecommender(URM_train)
    recommenderBetaGRAPH.fit(topK=10,
                             implicit=True,
                             normalize_similarity=True,
                             alpha=0.41,
                             beta=0.049)

    recommederUserKNN = UserKNNCFRecommender(URM_train)
示例#25
0
    def __init__(self,
                 URM_train,
                 ICM_train,
                 submission=False,
                 verbose=True,
                 seed=1205):
        super(UserWiseHybrid009, self).__init__(URM_train, verbose=verbose)
        recommenders = {
            'rp3b': RP3betaRecommender(URM_train),
            'p3a': P3alphaRecommender(URM_train),
            'sen': SLIMElasticNetRecommender(URM_train),
            'sbpr': SLIM_BPR_Cython(URM_train),
            'icb': ItemKNNCBFRecommender(URM_train, ICM_train),
            'icf': ItemKNNCFRecommender(URM_train),
            'ucf': UserKNNCFRecommender(URM_train),
            'sslim': SSLIMElasticNet(URM_train, ICM_train)
        }

        params = {
            'topK': 1000,
            'alpha': 0.38192761611274967,
            'beta': 0.0,
            'normalize_similarity': False
        }
        try:
            recommenders['rp3b'].load_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["rp3b"].RECOMMENDER_NAME}_for_sub')
            print(f"{recommenders['rp3b'].RECOMMENDER_NAME} loaded.")
        except:
            print(f"Fitting {recommenders['rp3b'].RECOMMENDER_NAME} ...")
            recommenders['rp3b'].fit(**params)
            recommenders['rp3b'].save_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["rp3b"].RECOMMENDER_NAME}_for_sub')
            print(f"done.")

        params = {
            'topK': 131,
            'alpha': 0.33660811631883863,
            'normalize_similarity': False
        }
        try:
            recommenders['p3a'].load_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["p3a"].RECOMMENDER_NAME}_for_sub')
            print(f"{recommenders['p3a'].RECOMMENDER_NAME} loaded.")
        except:
            print(f"Fitting {recommenders['p3a'].RECOMMENDER_NAME} ...")
            recommenders['p3a'].fit(**params)
            recommenders['p3a'].save_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["p3a"].RECOMMENDER_NAME}_for_sub')
            print(f"done.")

        params = {
            'topK': 992,
            'l1_ratio': 0.004065081925341167,
            'alpha': 0.003725005053334143
        }
        try:
            recommenders['sen'].load_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["sen"].RECOMMENDER_NAME}_for_sub')
            print(f"{recommenders['sen'].RECOMMENDER_NAME} loaded.")
        except:
            print(f"Fitting {recommenders['sen'].RECOMMENDER_NAME} ...")
            recommenders['sen'].fit(**params)
            recommenders['sen'].save_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["sen"].RECOMMENDER_NAME}_for_sub')
            print(f"done.")

        params = {
            'topK': 979,
            'epochs': 130,
            'symmetric': False,
            'sgd_mode': 'adam',
            'lambda_i': 0.004947329669424629,
            'lambda_j': 1.1534760845071758e-05,
            'learning_rate': 0.0001
        }
        try:
            recommenders['sbpr'].load_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["sbpr"].RECOMMENDER_NAME}_for_sub')
            print(f"{recommenders['sbpr'].RECOMMENDER_NAME} loaded.")
        except:
            print(f"Fitting {recommenders['sbpr'].RECOMMENDER_NAME} ...")
            recommenders['sbpr'].fit(**params)
            recommenders['sbpr'].save_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["sbpr"].RECOMMENDER_NAME}_for_sub')
            print(f"done.")

        params = {
            'topK': 65,
            'shrink': 0,
            'similarity': 'dice',
            'normalize': True
        }
        try:
            recommenders['icb'].load_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["icb"].RECOMMENDER_NAME}_for_sub')
            print(f"{recommenders['icb'].RECOMMENDER_NAME} loaded.")
        except:
            print(f"Fitting {recommenders['icb'].RECOMMENDER_NAME} ...")
            recommenders['icb'].fit(**params)
            recommenders['icb'].save_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["icb"].RECOMMENDER_NAME}_for_sub')
            print(f"done.")

        params = {
            'topK': 55,
            'shrink': 1000,
            'similarity': 'asymmetric',
            'normalize': True,
            'asymmetric_alpha': 0.0
        }
        try:
            recommenders['icf'].load_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["icf"].RECOMMENDER_NAME}_for_sub')
            print(f"{recommenders['icf'].RECOMMENDER_NAME} loaded.")
        except:
            print(f"Fitting {recommenders['icf'].RECOMMENDER_NAME} ...")
            recommenders['icf'].fit(**params)
            recommenders['icf'].save_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["icf"].RECOMMENDER_NAME}_for_sub')
            print(f"done.")

        params = {
            'topK': 190,
            'shrink': 0,
            'similarity': 'cosine',
            'normalize': True
        }
        try:
            recommenders['ucf'].load_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["ucf"].RECOMMENDER_NAME}_for_sub')
            print(f"{recommenders['ucf'].RECOMMENDER_NAME} loaded.")
        except:
            print(f"Fitting {recommenders['ucf'].RECOMMENDER_NAME} ...")
            recommenders['ucf'].fit(**params)
            recommenders['ucf'].save_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["ucf"].RECOMMENDER_NAME}_for_sub')
            print(f"done.")

        params = {
            'beta': 0.4849594591575789,
            'topK': 1000,
            'l1_ratio': 1e-05,
            'alpha': 0.001
        }
        try:
            recommenders['sslim'].load_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["sslim"].RECOMMENDER_NAME}_for_sub')
            print(f"{recommenders['sslim'].RECOMMENDER_NAME} loaded.")
        except:
            print(f"Fitting {recommenders['sslim'].RECOMMENDER_NAME} ...")
            recommenders['sslim'].fit(**params)
            recommenders['sslim'].save_model(
                f'stored_recommenders/seed_{str(seed)}_hybrid_sub/',
                f'{recommenders["sslim"].RECOMMENDER_NAME}_for_sub')
            print(f"done.")

        self.__recommender_segmentation = [
            ((0, 3),
             HiddenMergedRecommender(
                 URM_train,
                 ICM_train, [
                     recommenders['rp3b'], recommenders['icb'],
                     recommenders['icf']
                 ],
                 submission=submission,
                 verbose=verbose,
                 seed=seed), {
                     'alpha': 0.7276553525851246,
                     'l1_ratio': 0.6891035546237165,
                     'topK': 1000
                 }),
            ((3, 5),
             HiddenLinearRecommender(
                 URM_train,
                 ICM_train, [
                     recommenders['sslim'], recommenders['p3a'],
                     recommenders['icb']
                 ],
                 submission=submission,
                 verbose=verbose,
                 seed=seed), {
                     'alpha': 0.9847198829156348,
                     'l1_ratio': 0.9996962519963414
                 }),
            ((5, 10),
             HiddenLinearRecommender(
                 URM_train,
                 ICM_train, [
                     recommenders['icb'], recommenders['rp3b'],
                     recommenders['sen']
                 ],
                 submission=submission,
                 verbose=verbose,
                 seed=seed), {
                     'alpha': 0.9949623682515907,
                     'l1_ratio': 0.007879399002699851
                 }),
            ((10, 17),
             HiddenLinearRecommender(
                 URM_train,
                 ICM_train, [
                     recommenders['sslim'], recommenders['icb'],
                     recommenders['ucf']
                 ],
                 submission=submission,
                 verbose=verbose,
                 seed=seed), {
                     'alpha': 0.6461624491197696,
                     'l1_ratio': 0.7617220099582368
                 }),
            ((17, 30),
             HiddenLinearRecommender(
                 URM_train,
                 ICM_train, [
                     recommenders['sslim'], recommenders['p3a'],
                     recommenders['icb']
                 ],
                 submission=submission,
                 verbose=verbose,
                 seed=seed), {
                     'alpha': 0.8416340030829476,
                     'l1_ratio': 0.6651408407090509
                 }),
            ((30, 100),
             HiddenLinearRecommender(
                 URM_train,
                 ICM_train, [
                     recommenders['sslim'], recommenders['icb'],
                     recommenders['icf']
                 ],
                 submission=submission,
                 verbose=verbose,
                 seed=seed), {
                     'alpha': 0.996772013761913,
                     'l1_ratio': 0.7831508517025596
                 }),
            ((100, 200),
             HiddenLinearRecommender(
                 URM_train,
                 ICM_train, [
                     recommenders['sslim'], recommenders['rp3b'],
                     recommenders['icb']
                 ],
                 submission=submission,
                 verbose=verbose,
                 seed=seed), {
                     'alpha': 0.8416340030829476,
                     'l1_ratio': 0.6651408407090509
                 }),
            ((200, -1),
             HiddenMergedRecommender(
                 URM_train,
                 ICM_train, [
                     recommenders['sslim'], recommenders['p3a'],
                     recommenders['icb']
                 ],
                 submission=submission,
                 verbose=verbose,
                 seed=seed), {
                     'alpha': 0.859343616443417,
                     'l1_ratio': 0.8995038091652459,
                     'topK': 900
                 }),
        ]
# crea le matrici di raccomandazioni
recommenderTP = TopPopRecommender()
recommenderTP.fit(URM_all)

itemKNNCF = ItemKNNCFRecommender(URM_all)
itemKNNCF.fit(shrink=30, topK=10, similarity='jaccard', normalize=True)

recommenderCYTHON = SLIM_BPR_Cython(URM_all, recompile_cython=False)
# recommenderCYTHON.fit(epochs=200, batch_size=1000, sgd_mode='adagrad', learning_rate=1e-4, topK=10)
# recommenderCYTHON.save_model('model/', file_name='SLIM_Cython_max')
recommenderCYTHON.load_model('model/', file_name='SLIM_Cython_300_Ad')

recommenderCB = ItemKNNCBFRecommender(URM_all, ICM_all_weighted)
recommenderCB.fit(shrink=115, topK=10, normalize=True, similarity='jaccard')

recommenderELASTIC = SLIMElasticNetRecommender(URM_all)
# recommenderELASTIC.fit(topK=100, alpha=1e-4, positive_only=True, l1_ratio=0.5)
# recommenderELASTIC.save_model('model/', file_name='SLIM_ElasticNet_max')
recommenderELASTIC.load_model('model/',
                              file_name='SLIM_ElasticNet_l1ratio_0_5')

# recommenderAlphaGRAPH = P3alphaRecommender(URM_all)
# recommenderAlphaGRAPH.fit(topK=10, alpha=0.41, implicit=True, normalize_similarity=True)

recommenderBetaGRAPH = RP3betaRecommender(URM_all)
recommenderBetaGRAPH.fit(topK=54,
                         implicit=True,
                         normalize_similarity=True,
                         alpha=1e-6,
                         beta=0.2,
                         min_rating=0)
def read_data_split_and_search():
    """
    This function provides a simple example on how to tune parameters of a given algorithm

    The BayesianSearch object will save:
        - A .txt file with all the cases explored and the recommendation quality
        - A _best_model file which contains the trained model and can be loaded with recommender.load_model()
        - A _best_parameter file which contains a dictionary with all the fit parameters, it can be passed to recommender.fit(**_best_parameter)
        - A _best_result_validation file which contains a dictionary with the results of the best solution on the validation
        - A _best_result_test file which contains a dictionary with the results, on the test set, of the best solution chosen using the validation set
    """

    seed = 1205
    parser = DataParser()

    URM_all = parser.get_URM_all()
    ICM_obj = parser.get_ICM_all()

    # SPLIT TO GET TEST PARTITION
    URM_train, URM_test = split_train_in_two_percentage_global_sample(URM_all, train_percentage=0.90, seed=seed)

    # SPLIT TO GET THE HYBRID VALID PARTITION
    URM_train, URM_valid_hybrid = split_train_in_two_percentage_global_sample(URM_train, train_percentage=0.85,
                                                                              seed=seed)

    collaborative_algorithm_list = [
        # EASE_R_Recommender
        # PipeHybrid001,
        # Random,
        # TopPop,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # ItemKNNCFRecommender,
        # UserKNNCFRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        # PureSVDRecommender,
        # NMFRecommender,
        # PureSVDItemRecommender
        # SLIM_BPR_Cython,
        # SLIMElasticNetRecommender
        # IALSRecommender
        # MF_MSE_PyTorch
        # MergedHybrid000
        # LinearHybrid002ggg
        HybridCombinationSearch
    ]

    content_algorithm_list = [
        # ItemKNNCBFRecommender
    ]

    from Base.Evaluation.Evaluator import EvaluatorHoldout

    evaluator_valid_hybrid = EvaluatorHoldout(URM_valid_hybrid, cutoff_list=[10])
    evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[10])

    """
    earlystopping_keywargs = {"validation_every_n": 5,
                              "stop_on_validation": True,
                              "evaluator_object": evaluator_valid_hybrid,
                              "lower_validations_allowed": 5,
                              "validation_metric": 'MAP',
                              }

    print('IALS training...')
    ials = IALSRecommender(URM_train, verbose=False)
    ials_params = {'num_factors': 83, 'confidence_scaling': 'linear', 'alpha': 28.4278070726612,
                   'epsilon': 1.0234211788885077, 'reg': 0.0027328110246575004, 'epochs': 20}
    ials.fit(**ials_params, **earlystopping_keywargs)
    print("Done")


    print("PureSVD training...")
    psvd = PureSVDRecommender(URM_train, verbose=False)
    psvd_params = {'num_factors': 711}
    psvd.fit(**psvd_params)
    print("Done")
    """

    rp3b = RP3betaRecommender(URM_train, verbose=False)
    rp3b_params = {'topK': 1000, 'alpha': 0.38192761611274967, 'beta': 0.0, 'normalize_similarity': False}
    try:
        rp3b.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                        f'{rp3b.RECOMMENDER_NAME}_for_second_search')
        print(f"{rp3b.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {rp3b.RECOMMENDER_NAME} ...")
        rp3b.fit(**rp3b_params)
        print(f"done.")
        rp3b.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                        f'{rp3b.RECOMMENDER_NAME}_for_second_search')

    p3a = P3alphaRecommender(URM_train, verbose=False)
    p3a_params = {'topK': 131, 'alpha': 0.33660811631883863, 'normalize_similarity': False}
    try:
        p3a.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{p3a.RECOMMENDER_NAME}_for_second_search')
        print(f"{p3a.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {p3a.RECOMMENDER_NAME} ...")
        p3a.fit(**p3a_params)
        print(f"done.")
        p3a.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{p3a.RECOMMENDER_NAME}_for_second_search')

    icf = ItemKNNCFRecommender(URM_train, verbose=False)
    icf_params = {'topK': 55, 'shrink': 1000, 'similarity': 'asymmetric', 'normalize': True, 'asymmetric_alpha': 0.0}
    try:
        icf.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{icf.RECOMMENDER_NAME}_for_second_search')
        print(f"{icf.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {icf.RECOMMENDER_NAME} ...")
        icf.fit(**icf_params)
        print(f"done.")
        icf.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{icf.RECOMMENDER_NAME}_for_second_search')

    ucf = UserKNNCFRecommender(URM_train, verbose=False)
    ucf_params = {'topK': 190, 'shrink': 0, 'similarity': 'cosine', 'normalize': True}
    try:
        ucf.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{ucf.RECOMMENDER_NAME}_for_second_search')
        print(f"{ucf.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {ucf.RECOMMENDER_NAME} ...")
        ucf.fit(**ucf_params)
        print(f"done.")
        ucf.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{ucf.RECOMMENDER_NAME}_for_second_search')

    icb = ItemKNNCBFRecommender(URM_train, ICM_obj, verbose=False)
    icb_params = {'topK': 65, 'shrink': 0, 'similarity': 'dice', 'normalize': True}
    try:
        icb.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{icb.RECOMMENDER_NAME}_for_second_search')
        print(f"{icb.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {icf.RECOMMENDER_NAME} ...")
        icb.fit(**icb_params)
        print(f"done.")
        icb.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{icb.RECOMMENDER_NAME}_for_second_search')

    sen = SLIMElasticNetRecommender(URM_train, verbose=False)
    sen_params = {'topK': 992, 'l1_ratio': 0.004065081925341167, 'alpha': 0.003725005053334143}
    try:
        sen.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{sen.RECOMMENDER_NAME}_for_second_search')
        print(f"{sen.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {sen.RECOMMENDER_NAME} ...")
        sen.fit(**sen_params)
        print(f"done.")
        sen.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{sen.RECOMMENDER_NAME}_for_second_search')

    print("\nStart.")
    list_recommender = [icb, icf, ucf, p3a, rp3b, sen]
    list_already_seen = []
    combinations_already_seen = []
    """
    (icb, icf, p3a), (icb, icf, rp3b), (icb, icf, sen), (icb, p3a, rp3b), (icb, p3a, sen),
                                (icb, rp3b, sen), (icf, p3a, rp3b), (icf, p3a, sen)
    """

    for rec_perm in combinations(list_recommender, 3):

        if rec_perm not in combinations_already_seen:

            recommender_names = '_'.join([r.RECOMMENDER_NAME for r in rec_perm])
            output_folder_path = "result_experiments_v3/seed_" + str(
                seed) + '/linear_combination/' + recommender_names + '/'
            print(F"\nTESTING THE COMBO {recommender_names}")

            # If directory does not exist, create
            if not os.path.exists(output_folder_path):
                os.makedirs(output_folder_path)

            # TODO: setta I GIUSTI EVALUATOR QUI!!!!
            runParameterSearch_Collaborative_partial = partial(runParameterSearch_Collaborative,
                                                               URM_train=URM_train,
                                                               ICM_train=ICM_obj,
                                                               metric_to_optimize="MAP",
                                                               n_cases=50,
                                                               n_random_starts=20,
                                                               evaluator_validation_earlystopping=evaluator_valid_hybrid,
                                                               evaluator_validation=evaluator_valid_hybrid,
                                                               #evaluator_test=evaluator_test,
                                                               output_folder_path=output_folder_path,
                                                               allow_weighting=False,
                                                               # similarity_type_list = ["cosine", 'jaccard'],
                                                               parallelizeKNN=False,
                                                               list_rec=rec_perm)
            pool = multiprocessing.Pool(processes=int(multiprocessing.cpu_count()), maxtasksperchild=1)
            pool.map(runParameterSearch_Collaborative_partial, collaborative_algorithm_list)