示例#1
0
def GetOffset(filename):

    telescope, obsparam = CheckInstrument([filename[0]])
    for idx, elem in enumerate(filename):
        hdulist = fits.open(elem)
        Offset = hdulist[0].header['YOFFSET']
        print(Offset)
示例#2
0
文件: SP_Log.py 项目: Yeqzids/SP
def Log(filename, Outfile, verbode, Diagnostic):

    telescope, obsparam = CheckInstrument([filename[0]])
    print(telescope)
    if Diagnostic:
        diag.create_website('Log.html')
        html = '<H2>Log</H2>\n'
        html += "<P><TABLE BORDER=\"1\">\n<TR>\n"
        if telescope == 'GMOSS' or telescope == 'GMOSN':
            html += "<TH>Idx</TH><TH>Filename</TH> <TH>Images</TH></TR>\n"
        else:
            html += "<TH>Instrument</TH><TH>Index</TH> <TH>Obs type</TH> <TH>Object</TH> <TH>Exp time [sec]</TH>  <TH>RA</TH> <TH>DEC</TH> <TH>Airmass</TH> <TH>Time</TH>  <TH>Images</TH></TR>\n"

    for idx, elem in enumerate(filename):
        Splitted = elem.split('_')
        hdulist = fits.open(elem)

        if Diagnostic:
            diag.Create_Image(elem)
            framefilename = 'diagnostics/' + elem + '.png'

        INST = obsparam['telescope_instrument']
        OBSTYPE = hdulist[0].header[obsparam['obstype']]
        if telescope == 'SOAR':
            if elem.split('_')[3] == 'ACQ':
                OBSTYPE = 'ACQ'
        OBJECT = hdulist[0].header[obsparam['object']]
        if telescope == 'SOAR':
            if OBSTYPE == 'COMP':
                OBJECT = elem.split('_')[4]
        EXPTIME = hdulist[0].header[obsparam['exptime']]
        ALPHA = hdulist[0].header[obsparam['ra']]
        DEC = hdulist[0].header[obsparam['dec']]
        AM = hdulist[0].header[obsparam['airmass']]
        TIME = hdulist[0].header[obsparam['date_keyword']]
        IDX = Splitted[1]
        GRAT = hdulist[0].header[obsparam['grating']]

        if telescope == 'GMOSS' or telescope == 'GMOSN':
            WAV = hdulist[0].header[obsparam['tilt']]
            print('%13s %6s %10s %6s %15s %7s %3.3f %3.3f \t %5s %25s %15s' %
                  (INST, IDX, OBSTYPE, str(int(WAV)), OBJECT, str(
                      int(EXPTIME)), ALPHA, DEC, str(AM), TIME, GRAT))
            if Diagnostic:
                html += "<TH>Idx</TH><TH>Filename</TH> <TH>Images</TH> <TH>Images</TH></TR>\n"
        else:
            print('%13s %6s %10s %15s %7s %12s %12s %5s %25s' %
                  (INST, IDX, OBSTYPE, OBJECT, str(
                      int(EXPTIME)), str(ALPHA), str(DEC), str(AM), TIME))
            if Diagnostic:
                html += ("<TR><TD>%s</TD><TD>%s</TD> <TD>%s</TD>  <TD>%s</TD> <TD>%s</TD> <TD>%s</TD> <TD>%s</TD> <TD>%s</TD> <TD>%s</TD> <TH> <IMG SRC=\"%s\">  </TH></TR>\n") % \
            (INST, IDX, OBSTYPE,OBJECT,str(int(EXPTIME)),str(ALPHA),str(DEC), str(AM), TIME,framefilename)

#       print(INST + '\t' + OBSTYPE + '\t' + OBJECT + '\t'+ str(EXPTIME) + '\t' +  str(ALPHA) + '\t' + str(DEC) + '\t' + str(AM)  + '\t' + TIME )

    html += '</TABLE>\n'
    diag.append_website('Log.html', html, replace_below="<H2>Log</H2>\n")
示例#3
0
def Prepare(filenames, Verbose=True):

    logging.info('****************************************')
    logging.info('****** Start of SP_Prepare script ******')
    logging.info('****************************************')

    # Get current directory

    Directory = os.getcwd()

    # Removes the './' if present in filenames

    for idx, filename in enumerate(filenames):
        filenames[idx] = filename.replace('./', '')

    # start logging
#    logging.info('Preparing data with parameters: %s',filenames)

# Create the procc folder

#    now = datetime.datetime.now()

#    Dir_To_Create = 'Procc_' + str(now.year) + '_' + str(now.month) + '_' + str(now.day) + '_' + str(now.hour) + '_' + str(now.minute)           + '_' + str(now.second)
#    os.mkdir(Dir_To_Create)
#    Proc_Dir = Dir_To_Create

#  Copy raw data to a /raw directory for safety

    if not os.path.exists('raw'):
        os.makedirs('raw')
        for idx, filename in enumerate(filenames):
            shutil.copy(filename, './' + 'raw/' + filename)
            logging.info('All data have been backup to the ./raw directory')

    telescope, obsparam = CheckInstrument(filenames)

    # change FITS file extensions to .fits
    for idx, filename in enumerate(filenames):
        if filename.split('.')[-1] in ['fts', 'FTS', 'FITS', 'fit', 'FIT']:
            os.rename(filename, '.'.join(filename.split('.')[:-1]) + '.fits')
            filenames[idx] = '.'.join(filename.split('.')[:-1]) + '.fits'
            logging.info('change filename from "%s" to "%s"' %
                         (filename, filenames[idx]))


#        if telescope == 'SOAR':
#            hdulist = fits.open(filename)
#            hdulist[0].data = hdulist[0].data[200:-200,:]
#            hdulist.writeto(filename,overwrite = True,checksum=False, output_verify='ignore')

    CheckObsType(filenames, telescope, obsparam, Method='Normal')

    logging.info('**************************************')
    logging.info('****** end of SP_Prepare script ******')
    logging.info('**************************************')

    return None
示例#4
0
def CheckGrating(filenames):
    
    
    telescope, obsparam = CheckInstrument(filenames)

    ### read grating information from fits headers
    # check that they are the same for all images
    logging.info(('check for same grating for %d ' + \
                  'frames') % len(filenames))
    grating = []
    for idx, filename in enumerate(filenames):
        try:
            hdulist = fits.open(filename, ignore_missing_end=True)
        except IOError:
            logging.error('cannot open file %s' % filename)
            print('ERROR: cannot open file %s' % filename)
            filenames.pop(idx)
            continue

        header = hdulist[0].header
        grating.append(header[obsparam['grating']])
        print('%s \t %s' % (filename,header[obsparam['grating']]))

    if len(grating) == 0:
        raise KeyError('cannot identify filter; please update' + \
                       'setup/telescopes.py accordingly')

    if len(set(grating)) == 1:
        print('All the files possess the same grating')
    else:
        out = 0
        while out == 0:
            print('ERROR: multiple gratings used in dataset: %s' % str(set(grating)))
            text = raw_input("Do you want to modify the gratings of all the files ? : (['y'],'n']) ")
            if text == '' or text == 'y':
                grating = raw_input("What grating do you want to put in the header ? : ")
                out = 1
            else:
                if text == 'n':
                    print('The headers has not been changed.')
                    print('Exiting...')
                    sys.exit()
                else:
                    print("SP did not recognized you answer, please write 'y' or 'n' ")
                    text = raw_input("Do you want to modify the gratings of all the files ? : (['y'],'n']) ")
    
    if text == 'y' or '':
        for idx, filename in enumerate(filenames):
            try:
                hdulist = fits.open(filename, mode='update')
            except IOError:
                logging.error('cannot open file %s' % filename)
                print('ERROR: cannot open file %s' % filename)
                filenames.pop(idx)
                continue
            hdulist[0].header[obsparam['grating']] = grating
            hdulist.close()
示例#5
0
def Detect_Spectra(filename, OutName, DetecLim):

    Offset = []
    telescope, obsparam = CheckInstrument([filename[0]])

    for idx, elem in enumerate(filename):
        hdulist = fits.open(elem)
        Bin = int(hdulist[1].header['CCDSUM'][0])
        data = hdulist[0].data
        hdulist = fits.open(elem)
        Offset.append(hdulist[0].header['YOFFSET'])
        if idx == 0:
            print(idx)
            dataTot = data
        else:
            print(idx)
            dataTot += data

    hdulist[0].data = dataTot
    FitsName = OutName + '.fits'
    hdulist.writeto(FitsName)

    Sig = float(DetecLim)

    Spec = SP.Auto_Detect_Spectra(OutName + '.fits', Sig)
    print(Spec)

    PltScale = obsparam['pixscale']

    Offset = np.array(Offset)
    if telescope == 'GMOSS':
        Off = -Offset / (PltScale * Bin)
    if telescope == 'GMOSN':
        Off = Offset / (PltScale * Bin)

    print(Spec)

    Spec_Loc = SP.Get_Spectra(Spec, Off)

    if Bin == 4:
        Spec_Loc = Spec_Loc + 400
    if Bin == 2:
        Spec_Loc = Spec_Loc + 800

    SpecLocName = OutName + '_Spec_loc.txt'
    with open(SpecLocName, 'w') as f:
        simplejson.dump(list(Spec_Loc), f)

    OffsetName = OutName + '_Offset.txt'
    with open(OffsetName, 'w') as f:
        simplejson.dump(list(Offset), f)

    print(Spec_Loc)
    print(Off)
示例#6
0
文件: SP_Coadd.py 项目: Yeqzids/SP
def Coadd(filename, OutName):

    telescope, obsparam = CheckInstrument([filename[0]])
    for idx, elem in enumerate(filename):
        hdulist = fits.open(elem)
        data = hdulist[0].data
        if idx == 0:
            print(idx)
            dataTot = data
        else:
            print(idx)
            dataTot += data
    hdulist[0].data = dataTot
    hdulist.writeto(OutName)
示例#7
0
def Subtract(filename, OutName, outFile):

    telescope, obsparam = CheckInstrument([filename[0]])
    Image1 = filename[0]
    Image2 = SecondFile

    hdulist1 = fits.open(Image1)
    data1 = hdulist1[0].data

    hdulist2 = fits.open(Image2)
    data2 = hdulist2[0].data

    Result = data1 - data2

    hdulist1[0].data = Result
    hdulist1.writeto(outFile)
示例#8
0
def BckgSub(FileName,
            Verbose,
            Method,
            Suffix,
            Spec_loc,
            Diagnostic,
            Area=[250, 350],
            test=0,
            Live=False):

    telescope, obsparam = CheckInstrument([FileName[0]])
    Out_File = []
    print('telescope')
    for elem in FileName:

        hdulist = fits.open(elem)
        image = hdulist[0].data
        Mask = np.zeros_like(image)
        Mask[:, :] = 0

        if telescope == 'Deveny' or telescope == 'DEVENY' or telescope == 'SOAR' or telescope == 'NOT':
            if 'Deveny' or telescope == 'DEVENY':
                DetecFlags = {'Instrument': 'Deveny'}
            if telescope == 'NOT':
                DetecFlags = {'Instrument': 'ALFOSC_FASU'}

            if Method == 'auto':
                Center = SP.Detect_Spectra(image, Bin=2, **DetecFlags)
                (Center)
                Area[0] = int(Center - 70)
                Area[1] = int(Center + 70)
            if Method == 'range':
                Center = (Area[1] - Area[0]) / 2

            print(Area)

            Mask[0:Area[0], :] = 1
            Mask[Area[1]:, :] = 1
            Mask = Mask.astype(bool)

            image2 = np.ma.masked_array(image, mask=Mask)

            X = range(image.shape[0])
            X = np.array(X)

            Fdc = []

            if Live:

                imgdat = image

                Intervals = ZScaleInterval()
                Limits = Intervals.get_limits(imgdat)

                imgdat = (numpy.clip(imgdat, Limits[0], Limits[1]) -
                          Limits[0]) / (old_div(Limits[1] - Limits[0], 256))

                imgdat = interp.zoom(imgdat, test.zoom)

            for i in range(image.shape[1]):
                index = np.argwhere(np.isnan(image2[:, i]))
                image2[index, i] = 0
                image3 = SP.Sigma_Clip(image2[:, i])
                XX = np.ma.masked_array(X, image3.mask)
                z = np.ma.polyfit(XX, image3, 1)
                p = np.poly1d(z)
                Fdc.append(p(Center))
                image[:, i] = image[:, i] - p(X)

                if Live:
                    imgdat[:, int(i / 2)] = old_div(
                        np.clip(interp.zoom(image[:, i], test.zoom), 0, 100),
                        (old_div(100, 256)))

                    test.images[test.index] = Image.fromarray(imgdat)
                    test.canvas.update()
                    test.canvas.delete("all")
                    test.canvas.forget()

                    test.tkimage = ImageTk.PhotoImage(test.images[0],
                                                      palette=256)
                    test.canvas = Canvas(test.frame_fits,
                                         height=test.tkimage.height(),
                                         width=test.tkimage.width())
                    test.canvas.pack()
                    test.image = test.canvas.create_image(0,
                                                          0,
                                                          anchor='nw',
                                                          image=test.tkimage)

                    # select first image

                    test.index = 0
                    im = test.images[test.index]
                    test.tkimage.paste(im)
                    test.canvas.update()

            Out_File.append(
                elem.replace('.fits', '').replace('_Procc', '') + '_' +
                Suffix + '.fits')
            hdulist.writeto(elem.replace('.fits', '').replace('_Procc', '') +
                            '_' + Suffix + '.fits',
                            overwrite=True)
            np.savetxt(
                elem.replace('.fits', '').replace('_Procc', '') + '_' +
                Suffix + '.txt', Fdc)
        if telescope == 'GMOSS' or telescope == 'GMOSN':
            DetecFlags = {'Instrument': 'GMOS'}
            print(Spec_loc)
            OffFile = Spec_loc + '_Offset.txt'
            with open(OffFile, 'r') as f:
                Offset = simplejson.load(f)
            SpecFile = Spec_loc + '_Spec_loc.txt'
            with open(SpecFile, 'r') as f:
                Spec_Loc = simplejson.load(f)

            Offset = np.sort(np.array(Offset).astype(int))
            Spec_Loc = np.sort(Spec_Loc)

            Off = int(hdulist[0].header['YOFFSET'])
            print(Off)
            idx = np.where(Offset == Off)[0][0]

            if telescope == 'GMOSS':
                Center = Spec_Loc[2 - idx]
                print(Center)
            if telescope == 'GMOSN':
                Center = Spec_Loc[idx]
                print(Center)

            Area[0] = int(Center - 50)
            Area[1] = int(Center + 50)

            print(Area)

            Mask[0:Area[0], :] = 1
            Mask[Area[1]:, :] = 1
            Mask = Mask.astype(bool)

            image2 = np.ma.masked_array(image, mask=Mask)

            X = range(image.shape[0])
            X = np.array(X)

            for i in range(image.shape[1]):
                index = np.argwhere(np.isnan(image2[:, i]))
                image2[index, i] = 0
                image3 = SP.Sigma_Clip(image2[:, i], sig=3)
                XX = np.ma.masked_array(X, image3.mask)
                z = np.ma.polyfit(XX, image3, 1)
                p = np.poly1d(z)
                image[:, i] = image[:, i] - p(X)

            hdulist.writeto(elem.replace('.fits', '').replace(
                '_Procc', '').replace('Sub', '') + '_' + Suffix + '.fits',
                            overwrite=True)
            Out_File.append(
                elem.replace('.fits', '').replace('_Procc', '') + '_' +
                Suffix + '.fits')

    if Diagnostic:
        diag.create_website('Background-Sub_Log.html')
        diag.add_CosmCorr(Out_File, 'Background-Sub_Log.html')
示例#9
0
文件: SP_run.py 项目: Yeqzids/SP
def run_the_pipel(filenames, Verbose):
    """
    wrapper to run the photometry pipeline
    """

    # reset diagnostics for this data set
    _SP_conf.dataroot, _SP_conf.diagroot, \
    _SP_conf.index_filename, _SP_conf.reg_filename, _SP_conf.cal_filename, \
    _SP_conf.res_filename = _SP_conf.setup_diagnostics()

    ## diag.create_index(filenames,_SP_conf.dataroot) # commented for development uncomment for dealing with new unprepared data

    ### read telescope information from fits headers
    # check that they are the same for all images
    logging.info('##### new spectroscopic process in %s #####' %
                 _SP_conf.dataroot)
    logging.info(('check for same telescope/instrument for %d ' + \
                  'frames') % len(filenames))

    telescope, obsparam = CheckInstrument(filenames)

    ### read grating information from fits headers
    # check that they are the same for all images
    logging.info(('check for same grating for %d ' + \
                  'frames') % len(filenames))
    grating = []
    for idx, filename in enumerate(filenames):
        try:
            hdulist = fits.open(filename, ignore_missing_end=True)
        except IOError:
            logging.error('cannot open file %s' % filename)
            print('ERROR: cannot open file %s' % filename)
            filenames.pop(idx)
            continue

        header = hdulist[0].header
        grating.append(header[obsparam['grating']])

    if len(grating) == 0:
        raise KeyError('cannot identify filter; please update' + \
                       'setup/telescopes.py accordingly')

    if len(set(grating)) > 1:
        print('ERROR: multiple gratings used in dataset: %s' %
              str(set(grating)))
        print('Check the grating of each files by running SP_CheckGrating')
        #        logging.error('multiple grating used in dataset: %s' %
        #                      str(set(grating)))
        #        for i in range(len(filenames)):
        #            logging.error('%s %s' % (filenames[i], grating[i]))
        sys.exit()
    """ run SP_prepare """

    ### Prepare(filenames) # commented for development uncomment for dealing with new unprepared data

    _SP_conf.filenames = filenames  # for development purpose, delete if Prepare(filenames) uncommented

    ###    Toolbox.Get_BiasList()
    """ Add the bias file list to the diagnostic.html file """

    ###    diag.add_BiasList()
    """ Creation of the Master Bias, SP_run assumed that there is only one Master Bias to be created. One can use SP_Bias manually otherwise """

    ###    MasterBiasName = 'MasterBias.fits'
    ###    Create_Bias(_SP_conf.Bias_filenames,MasterBiasName,Verbose)

    ###    diag.add_BiasSummary(MasterBiasName)

    ###    Toolbox.Get_FlatList()
    """ Creation of the Master Flat """

    ###    diag.add_FlatList()

    ###    MasterFlatName = 'MasterFlat.fits'
    ###    Create_Flat(_SP_conf.Flat_filenames,MasterFlatName,Verbose,MasterBiasName,'index',True)
    """ processing of the target spectra """

    Toolbox.Get_AsteroidList()

    print(_SP_conf.Asteroid_filenames)
示例#10
0
def CheckObsType(filenames):

    telescope, obsparam = CheckInstrument(filenames)

    CollFoc = []
    for idx, filename in enumerate(filenames):
        try:
            hdulist = fits.open(filename,
                                mode='update',
                                ignore_missing_end=True)
        except IOError:
            logging.error('cannot open file %s' % filename)
            print('ERROR: cannot open file %s' % filename)
            filenames.pop(idx)
            continue

        data = hdulist[0].data
        Med = np.median(data[10:-10, 10:-10])
        std0 = np.std(np.median(data[10:-10, 10:-10], axis=0))
        std1 = np.std(np.median(data[10:-10, 10:-10], axis=1))

        if Med > 10000:
            print('%s changed to %s' %
                  (hdulist[0].header[obsparam['obstype']], 'FLAT'))
            hdulist[0].header[obsparam['obstype']] = 'FLAT'
        else:
            if std0 + std1 < 10:
                print('%s changed to %s' %
                      (hdulist[0].header[obsparam['obstype']], 'BIAS'))
                hdulist[0].header[obsparam['obstype']] = 'BIAS'
            else:
                if std0 / std1 > 100:
                    if telescope == 'DEVENY':
                        CollFoc.append((int(filename.split('.')[1]),
                                        hdulist[0].header['COLLFOC'], idx))
                        print('%s changed to %s' %
                              (hdulist[0].header[obsparam['obstype']],
                               'ARCS/FOCUS'))
                        hdulist[0].header[obsparam['obstype']] = 'ARCS/FOCUS'
                    else:
                        print('%s changed to %s' %
                              (hdulist[0].header[obsparam['obstype']], 'ARCS'))
                        hdulist[0].header[obsparam['obstype']] = 'ARCS'
                else:
                    print('%s changed to %s' %
                          (hdulist[0].header[obsparam['obstype']], 'OBJECT'))
                    hdulist[0].header[obsparam['obstype']] = 'OBJECT'

        hdulist.close()

    Cons = toolbox.Get_Consecutive(np.array(CollFoc)[:, 0].astype(int))
    Focus = []
    Series = []
    for idx, elem in enumerate(Cons):
        for idx2, elem2 in enumerate(elem):
            Focus.append(CollFoc[Cons[idx][idx2][0]][1])
        if len(set(Focus)) == 1:
            Series.append('ARCS')
        else:
            Series.append('FOCUS')
        print(Focus)
        Focus = []

    for idx, elem in enumerate(Cons):
        for idx2, elem2 in enumerate(elem):
            try:
                hdulist = fits.open(filenames[CollFoc[Cons[idx][idx2][0]][2]],
                                    mode='update',
                                    ignore_missing_end=True)
            except IOError:
                logging.error('cannot open file %s' % filename)
                print('ERROR: cannot open file %s' % filename)
                filenames.pop(idx)
                continue
            if Series[idx] == 'ARCS':
                print('%s changed to %s' %
                      (hdulist[0].header[obsparam['obstype']], 'ARCS'))
                hdulist[0].header[obsparam['obstype']] = 'ARCS'
            else:
                print('%s changed to %s' %
                      (hdulist[0].header[obsparam['obstype']], 'FOCUS'))
                hdulist[0].header[obsparam['obstype']] = 'FOCUS'

            hdulist.close()
示例#11
0
文件: SP_Prepare.py 项目: Yeqzids/SP
def Prepare(filenames,Verbose):
    
    
    # Get current directory 
    
    Directory = os.getcwd()
    
    # Removes the './' if present in filenames
    
    for idx, filename in enumerate(filenames):
        filenames[idx] = filename.replace('./','')
    
    # start logging
    logging.info('Preparing data with parameters: %s',filenames)
    print('Preparing data with parameters: %s',filenames)

    # Create the procc folder 

#    now = datetime.datetime.now()

#    Dir_To_Create = 'Procc_' + str(now.year) + '_' + str(now.month) + '_' + str(now.day) + '_' + str(now.hour) + '_' + str(now.minute)           + '_' + str(now.second)
#    os.mkdir(Dir_To_Create)
#    Proc_Dir = Dir_To_Create
    
    
    #  Copy raw data to a /raw directory for safety
    
    if not os.path.exists('raw'):
        os.makedirs('raw')
        for idx, filename in enumerate(filenames):
            shutil.copy(filename, './' + 'raw/' + filename)


    telescope, obsparam = CheckInstrument(filenames)


    # change FITS file extensions to .fits
    for idx, filename in enumerate(filenames):
        if filename.split('.')[-1] in ['fts', 'FTS', 'FITS', 'fit', 'FIT']:
            os.rename(filename, '.'.join(filename.split('.')[:-1])+'.fits')
            filenames[idx] = '.'.join(filename.split('.')[:-1])+'.fits'
            logging.info('change filename from "%s" to "%s"' %
                         (filename, filenames[idx]))
        if telescope == 'SOAR':
            hdulist = fits.open(filename)
            hdulist[0].data = hdulist[0].data[200:-200,:]
            hdulist.writeto(filename,overwrite = True,checksum=False, output_verify='ignore')


    # identify keywords for GENERIC telescopes

    # open one sample image file
    hdulist = fits.open(filenames[0], verify='ignore',
                        ignore_missing_end='True')
    header = hdulist[0].header
    
    # keywords that have to be implanted into each image
    implants = {}
    
    # prepare image headers for spectroscopic pipeline
    
    
    CheckObsType(filenames)


    return None   
示例#12
0
def WavCal(filenames, ArcsFile, OutFile, Verbose, Method):

    Pipe_Path = _SP_conf.rootpath
    Arcs = []
    for elem in ArcsFile:
        hdulist = fits.open(elem)
        Arcs.append(hdulist[0].data)

    Arcs = np.median(Arcs, axis=0)

    telescope, obsparam = CheckInstrument([ArcsFile[0]])

    print(telescope)

    SpecA = np.loadtxt(filenames[0]).transpose()
    SpecA = np.array(SpecA)

    if Method == 'template':

        if telescope == 'GMOSS' or telescope == 'GMOSN':
            Detector = hdulist[0].header['DETECTOR']
            print(Detector)
            Gratting = hdulist[0].header[obsparam['grating']]
            Binning = hdulist[1].header['CCDSUM'][0]
            DetecFlags = {
                'Instrument': telescope,
                'Binning': Binning,
                'Gratting': Gratting,
                'Detector': Detector
            }
            print(DetecFlags)
        if telescope == 'DEVENY':
            DetecFlags = {'Instrument': 'Deveny'}
        if telescope == 'SOAR':
            DetecFlags = {'Instrument': 'Soar'}

        print(DetecFlags)
        Wav = SP.Wav_Cal2(Arcs, **DetecFlags)
        Wav = np.array(Wav)
        Wav = Wav / 10000
        #        Wav = np.flip(Wav,axis=0)
        print(Wav)

        #        with open(filenames[0],'r') as f:
        #            SpecA = f.read().splitlines()

        #        SpecA = np.loadtxt(filenames[0]).transpose()
        #        SpecA = np.array(SpecA)
        #        SpecA = np.flip(SpecA,axis=0)

        #        f = open(OutFile,'w')
        #        for Wave,Spec in zip(Wav,SpecA):
        #          f.write("{} \t {} \n".format(Wave,Spec))

        np.savetxt(OutFile,
                   np.array([Wav, SpecA[0, :], SpecA[1, :]]).transpose())

    if Method == 'auto':
        Dim = []

        Dim.append(np.size(Arcs, 0))
        Dim.append(np.size(Arcs, 1))

        Arcs_L = Arcs[int(Dim[0] / 2), :]
        Arcs_Loc = SP.Auto_Detect_Lines(Arcs_L,
                                        Tresh_Det=1.5,
                                        Tresh_Arcs=[4, 10])

        f = open(Pipe_Path + '/Wav_Precomp', 'rb')
        Pre = pickle.load(f)
        f.close()

        One = Arcs_Loc[:9]
        One = np.array(One).astype(float)
        O = One - np.max(One)
        O = O / np.min(O)

        D1_one = np.sort(O)[1]
        D2_one = np.sort(O)[2]
        D3_one = np.sort(O)[3]
        D4_one = np.sort(O)[4]
        D5_one = np.sort(O)[5]
        D6_one = np.sort(O)[6]
        D7_one = np.sort(O)[7]

        dist = []
        for elem1, elem2, elem3, elem4, elem5, elem6, elem7 in zip(
                Pre[0], Pre[1], Pre[2], Pre[3], Pre[4], Pre[5], Pre[6]):
            dist.append((elem1 - D1_one)**2 + (elem2 - D2_one)**2 +
                        (elem3 - D3_one)**2 + (elem4 - D4_one)**2 +
                        (elem5 - D5_one)**2 + (elem6 - D6_one)**2 +
                        (elem7 - D7_one)**2)

        AS = np.argsort(dist)
        max_index, max_value = min(enumerate(dist), key=operator.itemgetter(1))

        WV = [
            6965.4, 7067.2, 7147.0, 7272.9, 7384.0, 7503.9, 7635.1, 7723.8,
            7948.2, 8014.8, 8115.3, 8264.5, 8408.2, 8521.4, 8667.9, 9122.9,
            9224.5, 9354.2, 9657.8, 9784.5
        ]

        comb = combinations(WV, 9)

        WV_Comb = []

        for elem in comb:
            WV_Comb.append(elem)

        a, b = np.polyfit(WV_Comb[AS[0]], np.sort(One)[::-1], 1)

        Red = a * np.array(WV) + b
        WV_Sol = []
        for elem in Arcs_Loc:
            Dist = (Red - elem)**2
            SD = np.argsort(Dist)
            WV_Sol.append(WV[SD[0]])

        aa = np.polyfit(WV_Sol, Arcs_Loc, 1, full=True)

        print(aa[1])

        with open(filenames[0], 'r') as f:
            SpecA = f.read().splitlines()

        SpecA = np.flip(SpecA, axis=0)

        Wav = (np.array(range(0, len(SpecA))) - aa[0][1]) / aa[0][0]
        Wav = Wav / 10000
        Wavel = Wav[::-1]

        f = open(OutFile, 'w')
        for Wave, Spec in zip(Wavel, SpecA):
            f.write("{} \t {} \n".format(Wave, Spec))

    return None
示例#13
0
def create_index(filenames, directory, display=False, imagestretch='linear'):
    """
    create index.html
    diagnostic root website for one pipeline process
    """

    if display:
        print('create frame index table and frame images')
    logging.info('create frame index table and frame images')

    # obtain grating from first image file
    telescope, obsparam = CheckInstrument([filenames[0]])
    refheader = fits.open(filenames[0], ignore_missing_end=True)[0].header
    grating = [refheader[obsparam['grating']]]

    del (refheader)

    html = "<H2>data directory: %s</H2>\n" % directory

    html += ("<H1>%s/%s-band - Diagnostic Output</H1>\n" + \
               "%d frames total, see full pipeline " + \
               "<A HREF=\"%s\">log</A> for more information\n") % \
               (obsparam['telescope_instrument'], grating,
                len(filenames),
                '.diagnostics/' +
                _SP_conf.log_filename.split('.diagnostics/')[1])

    ### create frame information table
    html += "<P><TABLE BORDER=\"1\">\n<TR>\n"
    html += "<TH>Idx</TH><TH>Filename</TH><TH>Date</TH>" + \
            "<TH>Objectname</TH><TH>Grating</TH>" + \
            "<TH>Airmass</TH><TH>Exptime (s)</TH>" + \
            "<TH>Type</TH>\n</TR>\n"

    # fill table and create frames
    filename = filenames
    for idx, filename in enumerate(filenames):

        ### fill table
        hdulist = fits.open(filename, ignore_missing_end=True)
        header = hdulist[0].header

        # read out image binning mode
        binning = tb.get_binning(header, obsparam)

        #framefilename = _pp_conf.diagroot + '/' + filename + '.png'
        framefilename = '.diagnostics/' + filename + '.png'

        try:
            objectname = header[obsparam['object']]
        except KeyError:
            objectname = 'Unknown Target'

        html += ("<TR><TD>%d</TD><TD><A HREF=\"%s\">%s</A></TD>" + \
                 "<TD>%s</TD><TD>%s</TD>" + \
                 "<TD>%s</TD><TD>%4.2f</TD><TD>%.1f</TD>" + \
                 "<TD>%s</TD>\n</TR>\n") % \
            (idx+1, framefilename, filename, header[obsparam['date_keyword']],
             objectname,
             header[obsparam['grating']],
             float(header[obsparam['airmass']]),
             float(header[obsparam['exptime']]),
             header[obsparam['obstype']])

        ### create frame image
        imgdat = hdulist[0].data
        # clip extreme values to prevent crash of imresize
        imgdat = np.clip(imgdat, np.percentile(imgdat, 1),
                         np.percentile(imgdat, 99))
        imgdat = imresize(imgdat,
                          min(1., 1000. / np.max(imgdat.shape)),
                          interp='nearest')
        #resize image larger than 1000px on one side

        norm = ImageNormalize(imgdat,
                              interval=ZScaleInterval(),
                              stretch={
                                  'linear': LinearStretch(),
                                  'log': LogStretch()
                              }[imagestretch])

        plt.figure(figsize=(5, 5))

        img = plt.imshow(imgdat, cmap='gray', norm=norm, origin='lower')
        # remove axes
        plt.axis('off')
        img.axes.get_xaxis().set_visible(False)
        img.axes.get_yaxis().set_visible(False)

        plt.savefig(framefilename,
                    format='png',
                    bbox_inches='tight',
                    pad_inches=0,
                    dpi=200)

        plt.close()
        hdulist.close()
        del (imgdat)

    html += '</TABLE>\n'

    create_website(_SP_conf.index_filename, html)

    ### add to summary website, if requested
    #    if _pp_conf.use_diagnostics_summary:
    #        add_to_summary(header[obsparam['object']], filtername,
    #                       len(filenames))

    return None
示例#14
0
def Extract_Spectrum(filename,
                     Verbose,
                     Spec_loc,
                     Diagnostic,
                     Spec_FWHM,
                     Yloc,
                     Live=0,
                     Live2=False,
                     Bckg='Auto'):

    Out_Files = []
    Out_Spec = []
    telescope, obsparam = CheckInstrument([filename[0]])
    DetecFlags = {'Instrument': telescope}
    if telescope == 'DEVENY' or telescope == 'SOAR' or telescope == 'NOT':
        for elem in filename:
            # Read the fits file
            hdulist = fits.open(elem)
            # Extract data from the fits file
            data = hdulist[0].data
            # Output filename for the extracted background for errorbar computation
            if Bckg == 'Auto':
                Backg = np.loadtxt(elem.replace('.fits', '.txt'))
                print(Backg)

            # Check the telescope which is used
            if telescope == 'DEVENY':
                DetecFlags = {'Instrument': 'Deveny'}
            if telescope == 'SOAR':
                DetecFlags = {'Instrument': 'Soar'}
            if telescope == 'NOT':
                DetecFlags = {'Instrument': 'ALFOSC_FASU'}
            # Try to detect the spectrum to extract

            if Yloc == False:
                Center = SP.Detect_Spectra(data, Bin=2, **DetecFlags)
            else:
                Center = Yloc

            if telescope == 'DEVENY':
                Start = (1415, Center)
            if telescope == 'SOAR':
                Start = (1415, Center)
            if telescope == 'NOT':
                Start = (250, Center)
#            Start = (1415,Center)

            Trace, bkg, MASK1 = SP.Fit_Trace(hdulist,
                                             Start,
                                             Range=15,
                                             SClip=True,
                                             Live=Live,
                                             Live2=Live2,
                                             **DetecFlags)

            TR = []
            for idx, elem2 in enumerate(Trace):
                if elem2 > 50 and elem2 < np.size(data, 0) - 50:
                    TR.append(data[int(elem2) - 45:int(elem2) + 45, idx])
                else:
                    TR.append(data[0:90, idx])
            TR = np.array(TR)
            hdulist[0].data = np.transpose(TR)
            hdulist.writeto(elem.replace('.fits', '') + 'Trace.fits',
                            overwrite=True)
            Out_Files.append(elem.replace('.fits', '') + 'Trace.fits')

            #            SSpec = []
            #            for FW in range(20):
            #                Spec1 = SP.Extract_Spectrum(data,Trace,bkg,FWHM=FW,Mask = MASK1,**DetecFlags)
            #                SSpec.append(Spec1)

            #            max_index, max_value = max(enumerate(np.nanmedian(SSpec,axis=1)/np.nanstd(SSpec,axis=1)), key=operator.itemgetter(1))
            Spec1 = SP.Extract_Spectrum(data,
                                        Trace,
                                        bkg,
                                        FWHM=Spec_FWHM,
                                        Mask=MASK1,
                                        **DetecFlags)

            #            Spec1 = SP.Extract_Spectrum(data,Trace,bkg,FWHM=50,Mask = MASK1,**DetecFlags)

            # Error bar computation
            print(Bckg)
            Err = np.sqrt(np.array(Spec1).astype(float) * 2.1) + np.sqrt(
                Spec_FWHM * Backg * 2.1) + np.sqrt(4)
            Err = Err / 2.1
            # Normalization of the spectrum
            print(Spec1)
            if telescope == 'NOT':
                Median = np.abs(np.nanmedian(Spec1[200:250]))
            else:
                Median = np.abs(np.nanmedian(Spec1[1500:1600]))
            Spec1N = Spec1 / Median
            Err = Err / Median
            fname = elem.replace('_CosmCorr', '').replace('Bckg',
                                                          'Extracted').replace(
                                                              '.fits', '.txt')
            np.savetxt(fname, np.array([Spec1N, Err]).transpose())
#            f = open(elem.replace('.fits','').replace('_bkgSub','').replace('_Procc','') + '.txt','w')
#            Out_Spec.append(elem.replace('.fits','').replace('_bkgSub','').replace('_Procc','') + '.txt')
#            for item in Spec1N:
#                f.write("%s\n" % item)
#            f.close()
    if telescope == 'GMOSS' or telescope == 'GMOSN':

        # Chip gaps for
        #
        # Hamamatsu:
        #
        # GMOS S: 61 pixels
        # GMOS N: 67 pixels
        #
        # Other chips:
        #
        # 37 pixels

        OffFile = Spec_loc + '_Offset.txt'
        with open(OffFile, 'r') as f:
            Offset = simplejson.load(f)
        SpecFile = Spec_loc + '_Spec_loc.txt'
        with open(SpecFile, 'r') as f:
            Spec_Loc = simplejson.load(f)

        Offset = np.sort(np.array(Offset).astype(int))
        Spec_Loc = np.sort(Spec_Loc)
        for elem in filename:

            # Read the fits file
            hdulist = fits.open(elem)

            # Extract data from the fits file
            data = hdulist[0].data
            data[data == 0] = np.nan  # Convert 0 to np.nan

            # Output filename for the extracted background for errorbar computation
            if Bckg == 'Auto':
                Backg = np.loadtxt(elem.replace('.fits', '.txt'))
            else:
                Backg = np.loadtxt(Bckg)

            # Get grating information    # USED ?
            Gratting = hdulist[0].header[obsparam['grating']]

            # Get binning information    # USED ?
            Binning = hdulist[1].header['CCDSUM'][0]

            # Get detector information   # USED ?
            Detector = hdulist[0].header['DETECTOR']

            # Get the detectors gain and read-out-noise
            Gain = []
            RON = []
            for HDU in hdulist:  # loop over all header in the fits file
                try:
                    Gain.append(HDU.header['GAIN'])
                    RON.append(HDU.header['RDNOISE'])
                except:
                    pass
            # Use the mean as an approximation of the gain for the whole detector (only used for errorbar computation)
            Gain = np.mean(Gain)
            RON = np.mean(RON)

            DetecFlags = {
                'Instrument': telescope,
                'Gratting': Gratting,
                'Binning': Binning,
                'Detector': Detector
            }

            Off = int(hdulist[0].header['YOFFSET'])
            idx = np.where(Offset == Off)[0][0]
            if telescope == 'GMOSS':
                Spec = Spec_Loc[2 - idx]
            if telescope == 'GMOSN':
                Spec = Spec_Loc[idx]
            if Binning == '2':
                Start = (1415, Spec)
            if Binning == '4':
                Start = (800, Spec)
            print(Start)
            Trace, bkg, MASK1 = SP.Fit_Trace(hdulist,
                                             Start,
                                             Range=15,
                                             SClip=True,
                                             **DetecFlags)

            #            # write a fits file with the extracted trace
            #            TR=[]
            #            for idx,elem2 in enumerate(Trace):
            #                if elem2 > 15:
            #                    TR.append(data[int(elem2)-15:int(elem2)+15,idx])
            #                else:
            #                    TR.append(data[0:30,idx])
            #            TR = np.array(TR)
            #            hdulist[0].data = np.transpose(TR)
            #            hdulist.writeto(elem.replace('.fits','') + 'Trace.fits' )
            #            Out_Files.append(elem.replace('.fits','') + 'Trace.fits')

            #            SSpec = []
            #            for FW in range(20):
            #                Spec1 = SP.Extract_Spectrum(data,Trace,bkg,FWHM=FW,Mask = MASK1,**DetecFlags)
            #                SSpec.append(Spec1)

            #            max_index, max_value = max(enumerate(np.nanmedian(SSpec,axis=1)/np.nanstd(SSpec,axis=1)), key=operator.itemgetter(1))
            #            Spec1 = SP.Extract_Spectrum(data,Trace,bkg,FWHM=max_index+1,Mask = MASK1,**DetecFlags)
            Spec1, Backgroung = SP.Extract_Spectrum(data,
                                                    Trace,
                                                    Backg,
                                                    FWHM=Spec_FWHM,
                                                    Mask=MASK1,
                                                    **DetecFlags)

            # Error bar computation

            Err = np.sqrt(np.array(Spec1).astype(float) * Gain) + np.sqrt(
                Spec_FWHM * Gain *
                np.array(Backgroung).astype(float)) + np.sqrt(RON)
            Err = Err / Gain

            if Binning == '2':
                Spec1N = Spec1 / np.abs(np.nanmedian(Spec1[1500:1600]))
                Err = Err / np.abs(np.nanmedian(Spec1[1500:1600]))
            if Binning == '4':
                Spec1N = Spec1 / np.abs(np.nanmedian(Spec1[800:850]))
                Err = Err / np.abs(np.nanmedian(Spec1[800:850]))


#            f = open(elem.replace('.fits','').replace('_bkgSub','').replace('_Procc','') + '.txt','w')
#            Out_Spec.append(elem.replace('.fits','').replace('_bkgSub','').replace('_Procc','') + '.txt')

# Error bar computation

#            Err = np.sqrt(np.array(Spec1).astype(float)*Gain) + np.sqrt(Spec_FWHM*Gain*np.array(Backgroung).astype(float)) + np.sqrt(RON)
#            Err = Err/Gain
# Normalization of the spectrum
#            Median = np.abs(np.nanmedian(Spec1[1500:1600]))
#            Spec1N = Spec1/Median
#            Err= Err/Median

            fname = elem.replace('_CosmCorr', '').replace('Bckg',
                                                          'Extracted').replace(
                                                              '.fits', '.txt')
            np.savetxt(fname, np.array([Spec1N, Err]).transpose())

            #            for item in Spec1N:
            #                f.write("%s\n" % item)

            f.close()

    if Diagnostic:
        diag.create_website('Extract_Log.html')
        diag.add_Extract(Out_Files, Out_Spec, 'Extract_Log.html')
示例#15
0
def WavCal(filenames,ArcsFile,OutFile,Verbose,Method,Line,Full):
    
#    logging.info('***************************************')
#    logging.info('****** Start of SP_Wavcal script ******')
#    logging.info('***************************************')    
    
    
    Pipe_Path = _SP_conf.rootpath
    Arcs = []
    for elem in ArcsFile:
        hdulist = fits.open(elem)
        Arcs.append(hdulist[0].data)
       
    Arcs = np.median(Arcs,axis=0)
    
    telescope, obsparam = CheckInstrument([ArcsFile[0]])  
    
    print(telescope)
    
    SpecA = np.loadtxt(filenames[0]).transpose()
    SpecA = np.array(SpecA)

    if telescope == 'DEVENY':
        DetecFlags = {'Instrument':'Deveny'} 
        try:
            Grating = int(str(hdulist[0].header[obsparam['grating']]).split('/')[0])
        except:
            Grating = 300

    
    if Method == 'Template':
    
    
        if telescope == 'GMOSS' or telescope == 'GMOSN':
            Detector = hdulist[0].header['DETECTOR']
            print(Detector)
            Gratting = hdulist[0].header[obsparam['grating']]
            Binning = hdulist[1].header['CCDSUM'][0]
            DetecFlags = {'Instrument':telescope, 'Binning' : Binning, 'Gratting':Gratting, 'Detector':Detector}  
            print DetecFlags
#        if telescope == 'DEVENY':
#            DetecFlags = {'Instrument':'Deveny'} 
#            Grating = int(str(hdulist[0].header[obsparam['grating']]).split('/')[0])
        if telescope == 'SOAR':
            DetecFlags = {'Instrument':'Soar'}      
        if telescope == 'NOT':
            Wav = ((10.93/2)*np.array(range(np.shape(Arcs)[1]))+3609.8)/10000
            print(np.shape(Arcs)[1])
            np.savetxt(OutFile,np.array([Wav,SpecA[0,:],SpecA[1,:]]).transpose())

            return None
    
           
        print(DetecFlags)
        Wav = SP.Wav_Cal2(Arcs,**DetecFlags)
        Wav = np.array(Wav)
        Wav = Wav/10000
#        Wav = np.flip(Wav,axis=0)
        print(Wav)
        
          
#        with open(filenames[0],'r') as f:
#            SpecA = f.read().splitlines()  
        
#        SpecA = np.loadtxt(filenames[0]).transpose()
#        SpecA = np.array(SpecA)
#        SpecA = np.flip(SpecA,axis=0)
        
#        f = open(OutFile,'w')
#        for Wave,Spec in zip(Wav,SpecA):
#          f.write("{} \t {} \n".format(Wave,Spec))
          
        np.savetxt(OutFile,np.array([Wav,SpecA[0,:],SpecA[1,:]]).transpose())
          
    if Method == 'Auto':
        Dim = []

        Dim.append(np.size(Arcs,0))
        Dim.append(np.size(Arcs,1))
    
    
        Arcs_L = Arcs[Line,:] 
        print(Arcs_L)
        Arcs_Loc = SP.Auto_Detect_Lines(Arcs_L,Sig_Clip = 2 ,Tresh_Det = 1, Tresh_Arcs = [1, 5] )
        
        
        if telescope == 'DEVENY':
#            if Grating == 150:
#                f = open(Pipe_Path +'/Pre_Comp_Deveny')
#                Pre = pickle.load(f)
#                f.close()
#                WV = [7503.9,7635.1,7723.8,7948.2,8014.8,8115.3,8264.5,8424.6,8521.4,9122.9,9224.5,9657.8]
#            if Grating == 300:
#                f = open(Pipe_Path +'/Pre_Comp_Deveny_R300')
#                Pre = pickle.load(f)
#                f.close()               
#                WV = [3261.05, 3610.51, 3650.15, 4046.56, 4358.33, 4678.16, 4799.92, 5085.82, 5460.74, 5769.6, 5790.7, 6965.5, 7067.2, 7272.9, 7384.0]
#            if Grating == 1200:
                f = open(Pipe_Path + '/Pre_Comp_Deveny_R1200')
                Pre = pickle.load(f)
                f.close()
                WV = [3125.67, 3131.70, 3252.52, 3261.05, 3341.48, 3403.65, 3467, 3612, 3649.56, 3650.15, 3663.28, 4046.56, 4077.84]

                
        else:
            f = open(Pipe_Path + '/Wav_Precomp','r')
            Pre = pickle.load(f)
            f.close()
            WV = [7067.2,7147.0, 7272.9, 7384.0 ,7503.9, 7635.1, 7723.8, 7948.2, 8014.8, 8115.3, 8264.5, 8408.2, 8521.4, 8667.9, 9122.9, 9224.5,9354.2,9657.8, 9784.5] 
        
        One = Arcs_Loc[:9]
        One = np.array(One).astype(float)
        O = One-np.max(One)
        O = O/np.min(O)

        D1_one = np.sort(O)[1]
        D2_one = np.sort(O)[2]
        D3_one = np.sort(O)[3]
        D4_one = np.sort(O)[4]
        D5_one = np.sort(O)[5]
        D6_one = np.sort(O)[6]
        D7_one = np.sort(O)[7]
        
        dist = []
        for elem1,elem2,elem3,elem4,elem5,elem6,elem7 in zip(Pre[0],Pre[1],Pre[2],Pre[3],Pre[4],Pre[5],Pre[6]):
            dist.append((elem1-D1_one)**2 + (elem2-D2_one)**2 + (elem3-D3_one)**2 + (elem4-D4_one)**2 + (elem5-D5_one)**2 + (elem6-D6_one)**2 + (elem7-D7_one)**2)

        AS = np.argsort(dist)
        max_index, max_value = min(enumerate(dist), key=operator.itemgetter(1))

#        WV = [7067.2,7147.0, 7272.9, 7384.0 ,7503.9, 7635.1, 7723.8, 7948.2, 8014.8, 8115.3, 8264.5, 8408.2, 8521.4, 8667.9, 9122.9, 9224.5,9354.2,9657.8, 9784.5] 

        comb = combinations(WV, 9)

        WV_Comb = []

        for elem in comb:
            WV_Comb.append(elem)


        a,b = np.polyfit(WV_Comb[AS[0]],np.sort(One)[::-1],1)

#        Red = a*np.array(WV)+b
#        WV_Sol = []
#        for elem in Arcs_Loc[:9]: 
#            Dist = (Red-elem)**2
#            SD = np.argsort(Dist)
#            WV_Sol.append(WV[SD[0]])
#
#        aa= np.polyfit(WV_Sol,Arcs_Loc[:9],1,full=True)
#        
#        print(aa[1])

        with open(filenames[0],'r') as f:
            SpecA = f.read().splitlines()  
        
        SpecA = np.flip(SpecA,axis=0)

        print('bla')
        Wav = (np.array(range(0,len(SpecA))) - b)/a
        Wav = Wav/10000
        Wavel = Wav[::-1]
        
#        Wav = (np.array(range(0,len(SpecA))) - aa[0][1])/aa[0][0]
#        Wav = Wav/10000
#        Wavel = Wav[::-1]
        
        f = open(OutFile,'w')
        for Wave,Spec in zip(Wavel,SpecA):
          f.write("{} \t {} \n".format(Wave,Spec))
        
        
#        
#    logging.info('*************************************')
#    logging.info('****** End of SP_Wavcal script ******')
#    logging.info('*************************************')
#        
        
    return None
示例#16
0
def Detect_Spectra(filename, OutName, DetecLim):

    print(DetecLim)

    Offset = []
    telescope, obsparam = CheckInstrument([filename[0]])

    for idx, elem in enumerate(filename):
        hdulist = fits.open(elem)
        Bin = int(hdulist[1].header['CCDSUM'][0])
        data = hdulist[0].data
        hdulist = fits.open(elem)
        Offset.append(hdulist[0].header['YOFFSET'])
        if idx == 0:
            print(idx)
            dataTot = data
        else:
            print(idx)
            dataTot += data

    hdulist[0].data = dataTot
    FitsName = OutName + '.fits'
    hdulist.writeto(FitsName)

    Sig = float(DetecLim)

    Spec = SP.Auto_Detect_Spectra(OutName + '.fits', Sig)
    print(Spec)

    PltScale = obsparam['pixscale']

    Offset = np.array(Offset)
    if telescope == 'GMOSS':
        Off = -Offset / (PltScale * Bin)
    if telescope == 'GMOSN':
        Off = Offset / (PltScale * Bin)

    print(Spec)

    Spec_Loc = SP.Get_Spectra(Spec, Off)

    if Bin == 4:
        Spec_Loc = Spec_Loc + 400
    if Bin == 2:
        if np.shape(hdulist[0].data)[0] > 600:
            Spec_Loc = Spec_Loc + 800
        else:
            Spec_Loc = Spec_Loc

    SpecLocName = OutName + '_Spec_loc.txt'
    with open(SpecLocName, 'w') as f:
        simplejson.dump(list(Spec_Loc), f)

    OffsetName = OutName + '_Offset.txt'
    with open(OffsetName, 'w') as f:
        simplejson.dump(list(Offset), f)

    Offset = np.sort(np.array(Offset).astype(int))
    Spec_Loc = np.sort(Spec_Loc)

    for idx, elem in enumerate(filename):
        hdulist = fits.open(elem)
        data = hdulist[0].data
        Range = range(np.min(Spec_Loc) - 20, np.max(Spec_Loc))
        bckg = np.nanmedian(data[Range, :], axis=0)
        np.savetxt(
            elem.replace('.fits', '').replace('_Procc', '') + '_Bckg' + '.txt',
            bckg)

    print(Spec_Loc)
    print(Off)