示例#1
0
def ModelTest(model_name, data_type, weights_name):
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    input_shape = (192, 192)
    batch_size = 2
    model_folder = os.path.join(
        r'/home/zhangyihong/Documents/ProstateECE/BaseModel', model_name)
    data_root = r'/home/zhangyihong/Documents/ProstateECE/NPYMaxPred'
    bc = BinaryClassification()

    if data_type == 'test':
        data_folder = os.path.join(data_root, "Test")
        data = DataManager()
    else:
        data_folder = os.path.join(data_root, "Train")
        spliter = DataSpliter()
        sub_list = spliter.LoadName(data_root +
                                    '/{}_name_basemodel.csv'.format(data_type))
        data = DataManager(sub_list=sub_list)

    data.AddOne(Image2D(data_folder + '/T2Slice', shape=input_shape))
    data.AddOne(Image2D(data_folder + '/AdcSlice', shape=input_shape))
    data.AddOne(Image2D(data_folder + '/DwiSlice', shape=input_shape))
    data.AddOne(Label(data_root + '/ece.csv'), is_input=False)
    data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)

    model = ResnextCBAM(3, 2).to(device)

    model.load_state_dict(torch.load(os.path.join(model_folder, weights_name)))

    pred_list, label_list = [], []
    model.eval()
    for inputs, outputs in data_loader:
        inputs = MoveTensorsToDevice(inputs, device)
        outputs = MoveTensorsToDevice(outputs, device)

        preds = model(*inputs)[:, 1]
        pred_list.extend((preds).cpu().data.numpy().squeeze().tolist())
        label_list.extend(
            (outputs).cpu().data.numpy().astype(int).squeeze().tolist())
    #
    #
    # fpr, tpr, auc = get_auc(pred_list, label_list)

    result = bc.Run(pred_list, label_list)
    print(result)
示例#2
0
def ModelTest(weights_list=None, data_type=None):
    if data_type is None:
        data_type = ['alltrain', 'test']
    from Metric.classification_statistics import get_auc, draw_roc
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    input_shape = (192, 192)
    batch_size = 2
    model_folder = model_root + '/PAGNet_MaxPred'
    bc = BinaryClassification()

    fpr_list, tpr_list, auc_list = [], [], []
    train_result, test_result = {}, {}
    for type in data_type:
        spliter = DataSpliter()
        data_folder = os.path.join(data_root, type)
        sub_list = spliter.LoadName(data_root + '/{}-name.csv'.format(type))

        data = DataManager(sub_list=sub_list)
        data.AddOne(Image2D(data_folder + '/T2Slice', shape=input_shape))
        data.AddOne(Image2D(data_folder + '/AdcSlice', shape=input_shape))
        data.AddOne(Image2D(data_folder + '/DwiSlice', shape=input_shape))
        data.AddOne(Image2D(data_folder + '/DistanceMap', shape=input_shape, is_roi=True))
        data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'), is_input=False)
        data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)

        cv_folder_list = [one for one in IterateCase(model_folder, only_folder=True, verbose=0)]
        cv_pred_list, cv_label_list = [], []

        for cv_index, cv_folder in enumerate(cv_folder_list):
            model = ResNeXt(3, 2).to(device)
            if weights_list is None:
                one_fold_weights_list = [one for one in IterateCase(cv_folder, only_folder=False, verbose=0) if
                                         one.is_file()]
                one_fold_weights_list = sorted(one_fold_weights_list, key=lambda x: os.path.getctime(str(x)))
                weights_path = one_fold_weights_list[-1]
            else:
                weights_path = weights_list[cv_index]

            print(weights_path.name)
            model.load_state_dict(torch.load(str(weights_path)))

            pred_list, label_list = [], []
            model.eval()
            for inputs, outputs in data_loader:
                inputs = MoveTensorsToDevice(inputs, device)
                outputs = MoveTensorsToDevice(outputs, device)

                preds = model(*inputs)[:, 1]
                pred_list.extend((1 - preds).cpu().data.numpy().squeeze().tolist())
                label_list.extend((1 - outputs).cpu().data.numpy().astype(int).squeeze().tolist())
                # pred_list.extend((preds).cpu().data.numpy().squeeze().tolist())
                # label_list.extend((outputs).cpu().data.numpy().astype(int).squeeze().tolist())

            cv_pred_list.append(pred_list)
            cv_label_list.append(label_list)

            del model, weights_path

        cv_pred = np.array(cv_pred_list)
        cv_label = np.array(cv_label_list)
        mean_pred = np.mean(cv_pred, axis=0)
        mean_label = np.mean(cv_label, axis=0)

        fpr, tpr, auc = get_auc(mean_pred, mean_label)
        fpr_list.append(fpr)
        tpr_list.append(tpr)
        auc_list.append(auc)

        if type == 'alltrain':
            train_result = bc.Run(mean_pred.tolist(), mean_label.astype(int).tolist(), threshould=None)
            print(train_result)
        elif type == 'test':
            test_result = bc.Run(mean_pred.tolist(), mean_label.astype(int).tolist(), threshould=train_result['Youden Index'])
            print(test_result)

    draw_roc(fpr_list, tpr_list, auc_list, name_list=['alltrian', 'test'])
示例#3
0
def ModelSUH(weights_list=None):
    from Metric.classification_statistics import get_auc
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    input_shape = (192, 192)
    batch_size = 2
    model_folder = model_root + '/ResNeXt_CBAM_CV_20200820'
    bc = BinaryClassification()

    fpr_list, tpr_list, auc_list = [], [], []

    data = DataManager()
    data.AddOne(Image2D(data_root + '/T2Slice', shape=input_shape))
    data.AddOne(Image2D(data_root + '/AdcSlice', shape=input_shape))
    data.AddOne(Image2D(data_root + '/DwiSlice', shape=input_shape))
    # data.AddOne(Image2D(data_root + '/DistanceMap', shape=input_shape, is_roi=True))
    # data.AddOne(Label(data_root + '/label_negative.csv', label_tag='Negative'), is_input=False)
    data.AddOne(Label(data_root + '/label_negative.csv', label_tag='Positive'), is_input=False)
    data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)

    cv_folder_list = [one for one in IterateCase(model_folder, only_folder=True, verbose=0)]
    cv_pred_list, cv_label_list = [], []
    cv_fcn_out_list = []
    for cv_index, cv_folder in enumerate(cv_folder_list):
        model = ResNeXt(3, 2).to(device)
        if weights_list is None:
            one_fold_weights_list = [one for one in IterateCase(cv_folder, only_folder=False, verbose=0) if
                                     one.is_file()]
            one_fold_weights_list = sorted(one_fold_weights_list, key=lambda x: os.path.getctime(str(x)))
            weights_path = one_fold_weights_list[-1]
        else:
            weights_path = weights_list[cv_index]

        print(weights_path.name)
        model.load_state_dict(torch.load(str(weights_path)))

        pred_list, label_list = [], []
        fcn_out_list = []
        model.eval()
        for inputs, outputs in data_loader:
            inputs = MoveTensorsToDevice(inputs, device)
            outputs = MoveTensorsToDevice(outputs, device)

            # preds = model(*inputs)[:, 1]
            model_pred = model(*inputs)
            preds = model_pred[0][:, 1]

            if isinstance((1 - preds).cpu().data.numpy().squeeze().tolist(), float):
                    # pred_list.append((1 - preds).cpu().data.numpy().squeeze().tolist())
                    # label_list.append((1 - outputs).cpu().data.numpy().astype(int).squeeze().tolist())
                    pred_list.append((preds).cpu().data.numpy().squeeze().tolist())
                    label_list.append((outputs).cpu().data.numpy().astype(int).squeeze().tolist())
                    fcn_out_list.append(model_pred[1].cpu().data.numpy().squeeze().tolist())
            else:
                    # pred_list.extend((1 - preds).cpu().data.numpy().squeeze().tolist())
                    # label_list.extend((1 - outputs).cpu().data.numpy().astype(int).squeeze().tolist())
                    pred_list.extend((preds).cpu().data.numpy().squeeze().tolist())
                    label_list.extend((outputs).cpu().data.numpy().astype(int).squeeze().tolist())
                    fcn_out_list.extend(model_pred[1].cpu().data.numpy().squeeze().tolist())

        cv_pred_list.append(pred_list)
        cv_label_list.append(label_list)
        cv_fcn_out_list.append(fcn_out_list)

        del model, weights_path

    cv_pred = np.array(cv_pred_list)
    cv_label = np.array(cv_label_list)
    cv_fcn = np.array(cv_fcn_out_list)
    mean_pred = np.mean(cv_pred, axis=0)
    mean_label = np.mean(cv_label, axis=0)
    mean_fcn_out = np.mean(cv_fcn, axis=0)
    np.save(r'/home/zhangyihong/Documents/ProstateECE/Result/NPY/FcnOut/aver_fcn_ResNeXt_suh.npy', mean_fcn_out)

    fpr, tpr, auc = get_auc(mean_pred, mean_label)
    fpr_list.append(fpr)
    tpr_list.append(tpr)
    auc_list.append(auc)

    result1 = bc.Run(mean_pred.tolist(), mean_label.astype(int).tolist())
    print(result1)
示例#4
0
def EnsembleInference(data_type, weights_list=None):
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    input_shape = (192, 192)
    batch_size = 12
    model_folder = model_root + '/PAGNet_MaxPred'
    bc = BinaryClassification()

    # spliter = DataSpliter()
    # sub_list = spliter.LoadName(data_root + '/{}-name.csv'.format(data_type))

    data = DataManager()
    if data_type == 'test':
        data.AddOne(Image2D(data_root + '/Test/T2Slice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/Test/AdcSlice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/Test/DwiSlice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/Test/DistanceMap', shape=input_shape, is_roi=True))
    else:
        data.AddOne(Image2D(data_root + '/Train/T2Slice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/Train/AdcSlice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/Train/DwiSlice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/Train/DistanceMap', shape=input_shape, is_roi=True))
    data.AddOne(Feature(data_root + '/clinical.csv'), is_input=True)
    data.AddOne(Label(data_root + '/ece.csv'), is_input=False)
    data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)

    cv_folder_list = [one for one in IterateCase(model_folder, only_folder=True, verbose=0)]
    cv_pred1_list, cv_pred2_list, cv_label_list = [], [], []
    for cv_index, cv_folder in enumerate(cv_folder_list):
        model = ResNeXt(3, 2, 7).to(device)
        if weights_list is None:
            one_fold_weights_list = [one for one in IterateCase(cv_folder, only_folder=False, verbose=0) if one.is_file()]
            one_fold_weights_list = sorted(one_fold_weights_list,  key=lambda x: os.path.getctime(str(x)))
            weights_path = one_fold_weights_list[-1]
        else:
            weights_path = weights_list[cv_index]

        print(weights_path.name)
        model.load_state_dict(torch.load(str(weights_path)))

        pred1_list, pred2_list, label_list = [], [], []
        model.eval()
        for inputs, outputs in data_loader:
            inputs = MoveTensorsToDevice(inputs, device)
            outputs = MoveTensorsToDevice(outputs, device)

            pred1, pred2 = model(*inputs)

            pred1_list.extend(pred1[:, 1].cpu().data.numpy().squeeze().tolist())

            pred2_list.extend((pred2[:, 1]).cpu().data.numpy().squeeze().tolist())
            label_list.extend((outputs).cpu().data.numpy().astype(int).squeeze().tolist())

        cv_pred1_list.append(pred1_list)
        cv_pred2_list.append(pred2_list)
        cv_label_list.append(label_list)

        del model, weights_path

    cv_pred1 = np.array(cv_pred1_list)
    cv_label = np.array(cv_label_list)
    cv_pred2 = np.array(cv_pred2_list)
    mean_pred1 = np.mean(cv_pred1, axis=0)
    mean_label = np.mean(cv_label, axis=0)
    mean_pred2 = np.mean(cv_pred2, axis=0)
    # if data_type == 'test':
    #     np.save(r'/home/zhangyihong/Documents/ProstateECE/NPYMaxPred/Result/PAGNet_test_pred1.npy', mean_pred1)
    #     np.save(r'/home/zhangyihong/Documents/ProstateECE/NPYMaxPred/Result/PAGNet_test_pred2.npy', mean_pred2)
    #     np.save(r'/home/zhangyihong/Documents/ProstateECE/NPYMaxPred/Result/PAGNet_test_label.npy', mean_label)
    # else:
    #     np.save(r'/home/zhangyihong/Documents/ProstateECE/NPYMaxPred/Result/PAGNet_train_pred1.npy', mean_pred1)
    #     np.save(r'/home/zhangyihong/Documents/ProstateECE/NPYMaxPred/Result/PAGNet_train_pred2.npy', mean_pred2)
    #     np.save(r'/home/zhangyihong/Documents/ProstateECE/NPYMaxPred/Result/PAGNet_train_label.npy', mean_label)

    print(mean_label)
    bc.Run(mean_pred1.tolist(), mean_label.astype(int).tolist())
    bc.Run(mean_pred2.tolist(), mean_label.astype(int).tolist())
示例#5
0
def ModelJSPH(weights_list=None,
              is_dismap=True,
              data_type='test',
              store_path=r''):
    model_root = r'/home/zhangyihong/Documents/ProstateECE/Model'
    data_root = r'/home/zhangyihong/Documents/ProstateECE/NPYNoDivide'
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    input_shape = (192, 192)
    batch_size = 2
    bc = BinaryClassification(store_folder=store_path, store_format='eps')
    if is_dismap:
        from SYECE.model import ResNeXt
        model_folder = model_root + '/ResNeXt_CBAM_CV_20200814'
    else:
        from SYECE.ModelWithoutDis import ResNeXt
        model_folder = model_root + '/ResNeXt_CBAM_CV_20200820'

    spliter = DataSpliter()
    sub_list = spliter.LoadName(data_root + '/{}-name.csv'.format(data_type))

    if data_type == 'test':
        data = DataManager(sub_list=sub_list)
        data.AddOne(Image2D(data_root + '/T2Slice/Test', shape=input_shape))
        data.AddOne(Image2D(data_root + '/AdcSlice/Test', shape=input_shape))
        data.AddOne(Image2D(data_root + '/DwiSlice/Test', shape=input_shape))
        if is_dismap:
            data.AddOne(
                Image2D(data_root + '/DistanceMap/Test',
                        shape=input_shape,
                        is_roi=True))
            data.AddOne(Label(data_root + '/label.csv', label_tag='Negative'),
                        is_input=False)
        else:
            data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'),
                        is_input=False)

        data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)
    else:
        data = DataManager(sub_list=sub_list)
        data.AddOne(Image2D(data_root + '/T2Slice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/AdcSlice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/DwiSlice', shape=input_shape))
        if is_dismap:
            data.AddOne(
                Image2D(data_root + '/DistanceMap',
                        shape=input_shape,
                        is_roi=True))
            data.AddOne(Label(data_root + '/label.csv', label_tag='Negative'),
                        is_input=False)
        else:
            data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'),
                        is_input=False)

        data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)

    cv_folder_list = [
        one for one in IterateCase(model_folder, only_folder=True, verbose=0)
    ]

    cv_pred_list, cv_label_list = [], []
    for cv_index, cv_folder in enumerate(cv_folder_list):
        model = ResNeXt(3, 2).to(device)
        if weights_list is None:
            one_fold_weights_list = [
                one
                for one in IterateCase(cv_folder, only_folder=False, verbose=0)
                if one.is_file()
            ]
            one_fold_weights_list = sorted(
                one_fold_weights_list, key=lambda x: os.path.getctime(str(x)))
            weights_path = one_fold_weights_list[-1]
        else:
            weights_path = weights_list[cv_index]

        print(weights_path.name)
        model.load_state_dict(torch.load(str(weights_path)))

        pred_list, label_list = [], []
        model.eval()
        for inputs, outputs in data_loader:
            inputs = MoveTensorsToDevice(inputs, device)
            outputs = MoveTensorsToDevice(outputs, device)

            preds = model(*inputs)[:, 1]
            if is_dismap:
                pred_list.extend(
                    (1 - preds).cpu().data.numpy().squeeze().tolist())
                label_list.extend((
                    1 -
                    outputs).cpu().data.numpy().astype(int).squeeze().tolist())

            else:
                pred_list.extend((preds).cpu().data.numpy().squeeze().tolist())
                label_list.extend((
                    outputs).cpu().data.numpy().astype(int).squeeze().tolist())

        # if cv_index == 1:
        #     for num, pred in enumerate(pred_list):
        #         print(num, pred)
        cv_pred_list.append(pred_list)
        cv_label_list.append(label_list)

        del model, weights_path

    cv_pred = np.array(cv_pred_list)
    cv_label = np.array(cv_label_list)
    mean_pred = np.mean(cv_pred, axis=0)
    mean_label = np.mean(cv_label, axis=0)
    bc.Run(mean_pred.tolist(), mean_label.astype(int).tolist())

    return mean_pred, mean_label,
示例#6
0
def ModelTest(weights_list=None, data_type=None):
    if data_type is None:
        data_type = ['alltrain', 'test']
    from Metric.classification_statistics import get_auc, draw_roc
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    input_shape = (192, 192)
    batch_size = 2
    model_folder = model_root + '/ResNeXt_CBAM_CV_20201116_dis_five_lf'
    bc = BinaryClassification()

    fpr_list, tpr_list, auc_list = [], [], []
    for type in data_type:
        spliter = DataSpliter()
        sub_list = spliter.LoadName(data_root + '/{}-name.csv'.format(type))

        if type == 'test':
            data = DataManager(sub_list=sub_list)
            data.AddOne(Image2D(data_root + '/T2Slice/Test',
                                shape=input_shape))
            data.AddOne(
                Image2D(data_root + '/AdcSlice/Test', shape=input_shape))
            data.AddOne(
                Image2D(data_root + '/DwiSlice/Test', shape=input_shape))
            data.AddOne(
                Image2D(data_root + '/DistanceMap/Test',
                        shape=input_shape,
                        is_roi=True))
            data.AddOne(Feature(data_root + '/FiveClinicalbGS.csv'),
                        is_input=True)
            data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'),
                        is_input=False)
            data_loader = DataLoader(data,
                                     batch_size=batch_size,
                                     shuffle=False)
        else:
            data = DataManager(sub_list=sub_list)
            data.AddOne(Image2D(data_root + '/T2Slice', shape=input_shape))
            data.AddOne(Image2D(data_root + '/AdcSlice', shape=input_shape))
            data.AddOne(Image2D(data_root + '/DwiSlice/', shape=input_shape))
            data.AddOne(
                Image2D(data_root + '/DistanceMap',
                        shape=input_shape,
                        is_roi=True))
            data.AddOne(Feature(data_root + '/FiveClinicalbGS.csv'),
                        is_input=True)
            data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'),
                        is_input=False)
            data_loader = DataLoader(data,
                                     batch_size=batch_size,
                                     shuffle=False)

        cv_folder_list = [
            one
            for one in IterateCase(model_folder, only_folder=True, verbose=0)
        ]
        cv_pred_list, cv_label_list = [], []

        for cv_index, cv_folder in enumerate(cv_folder_list):
            model = ResNeXt(3, 2).to(device)
            if weights_list is None:
                one_fold_weights_list = [
                    one for one in IterateCase(
                        cv_folder, only_folder=False, verbose=0)
                    if one.is_file()
                ]
                one_fold_weights_list = sorted(
                    one_fold_weights_list,
                    key=lambda x: os.path.getctime(str(x)))
                weights_path = one_fold_weights_list[-1]
            else:
                weights_path = weights_list[cv_index]

            print(weights_path.name)
            model.load_state_dict(torch.load(str(weights_path)))

            pred_list, label_list = [], []
            model.eval()
            for inputs, outputs in data_loader:
                inputs = MoveTensorsToDevice(inputs, device)
                outputs = MoveTensorsToDevice(outputs, device)

                preds = model(*inputs)[:, 1]
                pred_list.extend((preds).cpu().data.numpy().squeeze().tolist())
                label_list.extend((
                    outputs).cpu().data.numpy().astype(int).squeeze().tolist())

            cv_pred_list.append(pred_list)
            cv_label_list.append(label_list)

            del model, weights_path

        cv_pred = np.array(cv_pred_list)
        cv_label = np.array(cv_label_list)
        mean_pred = np.mean(cv_pred, axis=0)
        mean_label = np.mean(cv_label, axis=0)
        np.save(
            os.path.join(
                r'/home/zhangyihong/Documents/ProstateECE/Result/NPY/AddClinical/FiveFeatureLFbGS',
                type + 'JSPH_FiveFeature_label.npy'), mean_label)
        np.save(
            os.path.join(
                r'/home/zhangyihong/Documents/ProstateECE/Result/NPY/AddClinical/FiveFeatureLFbGS',
                type + 'JSPH_FiveFeature_pred.npy'), mean_pred)

        fpr, tpr, auc = get_auc(mean_pred, mean_label)
        fpr_list.append(fpr)
        tpr_list.append(tpr)
        auc_list.append(auc)

        print(type)
        bc.Run(mean_pred.tolist(), mean_label.astype(int).tolist())

    draw_roc(fpr_list, tpr_list, auc_list, name_list=['alltrian', 'test'])
示例#7
0
def EnsembleInference(data_type, weights_list=None):
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    input_shape = (192, 192)
    batch_size = 2
    model_folder = model_root + '/ResNeXt_CBAM_CV_20201028_dis&age&psa_lastfc'
    bc = BinaryClassification()

    spliter = DataSpliter()
    # sub_list = spliter.LoadName(data_root / '{}-name.csv'.format(data_type), contain_label=True)
    sub_list = spliter.LoadName(data_root + '/{}-name.csv'.format(data_type))

    if data_type == 'test':
        data = DataManager(sub_list=sub_list)
        data.AddOne(Image2D(data_root + '/T2Slice/Test', shape=input_shape))
        data.AddOne(Image2D(data_root + '/AdcSlice/Test', shape=input_shape))
        data.AddOne(Image2D(data_root + '/DwiSlice/Test', shape=input_shape))
        data.AddOne(
            Image2D(data_root + '/DistanceMap/Test',
                    shape=input_shape,
                    is_roi=True))
        data.AddOne(Feature(data_root + '/FiveClinicalbGS.csv'), is_input=True)
        data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'),
                    is_input=False)
        data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)
    else:
        data = DataManager(sub_list=sub_list)
        data.AddOne(Image2D(data_root + '/T2Slice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/AdcSlice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/DwiSlice/', shape=input_shape))
        data.AddOne(
            Image2D(data_root + '/DistanceMap', shape=input_shape,
                    is_roi=True))
        data.AddOne(Feature(data_root + '/FiveClinicalbGS.csv'), is_input=True)
        data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'),
                    is_input=False)
        data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)

    cv_folder_list = [
        one for one in IterateCase(model_folder, only_folder=True, verbose=0)
    ]
    cv_pred_list, cv_label_list = [], []
    for cv_index, cv_folder in enumerate(cv_folder_list):
        model = ResNeXt(3, 2).to(device)
        if weights_list is None:
            one_fold_weights_list = [
                one
                for one in IterateCase(cv_folder, only_folder=False, verbose=0)
                if one.is_file()
            ]
            one_fold_weights_list = sorted(
                one_fold_weights_list, key=lambda x: os.path.getctime(str(x)))
            weights_path = one_fold_weights_list[-1]
        else:
            weights_path = weights_list[cv_index]

        print(weights_path.name)
        model.load_state_dict(torch.load(str(weights_path)))

        pred_list, label_list = [], []
        model.eval()
        for inputs, outputs in data_loader:
            inputs = MoveTensorsToDevice(inputs, device)
            outputs = MoveTensorsToDevice(outputs, device)

            preds = model(*inputs)[:, 1]
            pred_list.extend((preds).cpu().data.numpy().squeeze().tolist())
            label_list.extend(
                (outputs).cpu().data.numpy().astype(int).squeeze().tolist())

        bc.Run(pred_list, label_list)

        cv_pred_list.append(pred_list)
        cv_label_list.append(label_list)

        del model, weights_path

    cv_pred = np.array(cv_pred_list)
    cv_label = np.array(cv_label_list)
    mean_pred = np.mean(cv_pred, axis=0)
    mean_label = np.mean(cv_label, axis=0)

    print(mean_label)
    bc.Run(mean_pred.tolist(), mean_label.astype(int).tolist())
示例#8
0
def EnsembleInference(data_type, model_name, add_type, weights_list=None):
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    input_shape = (192, 192)
    batch_size = 2
    model_folder = os.path.join(model_root, model_name)
    bc = BinaryClassification()

    spliter = DataSpliter()
    sub_list = spliter.LoadName(data_root + '/{}-name.csv'.format(data_type))

    if data_type == 'test':
        data = DataManager(sub_list=sub_list)
        data.AddOne(Image2D(data_root + '/T2Slice/Test', shape=input_shape))
        data.AddOne(Image2D(data_root + '/AdcSlice/Test', shape=input_shape))
        data.AddOne(Image2D(data_root + '/DwiSlice/Test', shape=input_shape))
        data.AddOne(
            Image2D(data_root + '/' + add_type + '/Test',
                    shape=input_shape,
                    is_roi=True))
        data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'),
                    is_input=False)
        data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)
    else:
        data = DataManager(sub_list=sub_list)
        data.AddOne(Image2D(data_root + '/T2Slice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/AdcSlice', shape=input_shape))
        data.AddOne(Image2D(data_root + '/DwiSlice', shape=input_shape))
        data.AddOne(
            Image2D(data_root + '/' + add_type, shape=input_shape,
                    is_roi=True))
        data.AddOne(Label(data_root + '/label.csv', label_tag='Positive'),
                    is_input=False)
        data_loader = DataLoader(data, batch_size=batch_size, shuffle=False)

    cv_folder_list = [
        one for one in IterateCase(model_folder, only_folder=True, verbose=0)
    ]
    cv_pred_list, cv_label_list = [], []
    for cv_index, cv_folder in enumerate(cv_folder_list):
        model = ResNeXt(3, 2).to(device)
        if weights_list is None:
            one_fold_weights_list = [
                one
                for one in IterateCase(cv_folder, only_folder=False, verbose=0)
                if one.is_file()
            ]
            one_fold_weights_list = sorted(
                one_fold_weights_list, key=lambda x: os.path.getctime(str(x)))
            weights_path = one_fold_weights_list[-1]
        else:
            weights_path = weights_list[cv_index]

        print(weights_path.name)
        model.load_state_dict(torch.load(str(weights_path)))

        pred_list, label_list = [], []
        model.eval()
        for inputs, outputs in data_loader:
            inputs = MoveTensorsToDevice(inputs, device)
            outputs = MoveTensorsToDevice(outputs, device)

            preds = model(*inputs)[:, 1]
            pred_list.extend((preds).cpu().data.numpy().squeeze().tolist())
            label_list.extend(
                (outputs).cpu().data.numpy().astype(int).squeeze().tolist())

        # bc.Run(pred_list, label_list)

        cv_pred_list.append(pred_list)
        cv_label_list.append(label_list)

        del model, weights_path

    cv_pred = np.array(cv_pred_list)
    cv_label = np.array(cv_label_list)
    mean_pred = np.mean(cv_pred, axis=0)
    mean_label = np.mean(cv_label, axis=0)
    np.save(
        os.path.join(
            r'/home/zhangyihong/Documents/ProstateECE/Result/NPY/ChangeAtten',
            add_type + data_type + '_label.npy'), mean_label)
    np.save(
        os.path.join(
            r'/home/zhangyihong/Documents/ProstateECE/Result/NPY/ChangeAtten',
            add_type + data_type + '_pred.npy'), mean_pred)

    print(mean_label)
    bc.Run(mean_pred.tolist(), mean_label.astype(int).tolist())