示例#1
0
def beliefPropagation(X,
                      W,
                      P,
                      numMaxIt=10,
                      convergencePercentage=None,
                      convergenceThreshold=0.9961947,
                      debug=1,
                      damping=1,
                      clamping=False):
    """Standard belief propagation assuming a directed graph with two variants:
        V1: one directed potential across edge direction: P is one potential, and W contains the weights of edges
        V2: a set of potentials on different edges: P is a tensor, and W indexes the potentials
    Dimensions of P (2 or 3) determines variant.
    Uses message-passing with division: see [Koller,Friedman 2009] Section 10.3.1.
    Uses damping: see [Koller,Friedman 2009] Section 11.1.
    Can be run either with given number of maximal iterations or until specified percentage of nodes have converged.
    Convergence of a node is determined by (variant of) cosine similarity between *centered beliefs* from two iterations.
    If convergence criterium is reached, the iterations will stop before maximal iterations.
    Parameter "debug" allows alternative, more detailed outputs, e.g., to get intermediate belief values.
    Checks that every entry in X and P are > 0.
    Can model undirected graphs by (1) specifing every edge only for one direction, an d(2) using symmetric potentials.

    Parameters
    ----------
    X : [n x k] np array
        prior (explicit) belief matrix.
        Rows do not have to be row-normalized.
        Rows can be all 0, which get later replaced by undefined prior belief.
    W : [n x n] sparse.csr_matrix
        directed sparse weighted adjacency matrix (thus a directed graph is assumed)
        Also allows undirected graph by simply specifying only symmetric potentials
        V1: weight determines the actual edge weight
        V2: weight determines the index of a potential (from potential tensor P)
    P : V1: [k x k]
        any directed potential (no requirement for normalization or identical row or column sums)
        V2: [num_pot_P x k x k] np array
        set of potentials (as tensor)
    numMaxIt : int (Default = 10)
        number of maximal iterations to perform
    convergencePercentage : float (Default = None)
        percentage of nodes that need to have converged in order to interrupt the iterations.
        Notice that a node with undefined beliefs does not count as converged if it does not change anymore
        (in order to avoid counting nodes without explicit beliefs as converged in first few rounds).
        If None, then runs until numMaxIt
    convergenceThreshold : float (Default = 0.9961947)
        cose similarity (actually, the "cosine_ratio" similarity) between two belief vectors in order to deem them as identicial (thus converged).
        In case both vectors have the same length, then: cos(5 deg) = 0.996194698092. cos(1 deg) = 0.999847695156
    debug : int (Default = 1)
        0 : no debugging and just returns F
        1 : tests for correct input, and just returns F
        2 : tests for correct input, and returns (F, actualNumIt, convergenceRatios)
        3 : tests for correct input, and returns (list of F, list of convergenceRatios)
    damping : float   (Default = 1)
        fraction of message values that come from new iteration (if 1, then no re-use of prior iteration)
    clamping : Boolean (Default = False)
        whether or not the explicit beliefs in X should be clamped to the nodes or not

    Returns (if debug == 0 or debug == 1)
    -------------------------------------
    F : [n x k] np array
        final belief matrix, each row normalized to form a label distribution

    Returns (if debug == 2 )
    ------------------------
    F : [n x k] np array
        final belief matrix, each row normalized to form a label distribution
    actualNumIt : int
        actual number of iterations performed
    actualPercentageConverged : float
        percentage of nodes that converged

    Returns (if debug == 3 )
    ------------------------
    List of F : [(actualNumIt+1) x n x k] np array
        list of final belief matrices for each iteration, represented as 3-dimensional numpy array
        Also includes the original beliefs as first entry (0th iteration). Thus has (actualNumIt + 1) entries
    actualNumIt : int
        actual number of iterations performed (not counting the first pass = 0th iteration for initializing)
    List of actualPercentageConverged : list of float (with length actualNumIt)
        list of percentages of nodes that converged in each iteration > 0. Thus has actualNumIt entries
    """

    # --- create variables for convergence checking and debugging
    n, k = X.shape
    dim_pot = len(P.shape)  # dimensions 2 or 3: determines V1 or V2
    Pot = P  # for case of dim_pot = 2
    if debug >= 1:
        assert (X >= 0).all(), "All explicit beliefs need to be >=0 "
        assert (issparse(W)), "W needs to be sparse"
        n2, n3 = W.shape
        assert type(
            P
        ).__module__ == "numpy", "P needs to be numpy array (and not a matrix)"
        assert dim_pot in [
            2, 3
        ], "Input Potentials need to be 2-dimensional or 3-dimensional"
        if dim_pot == 2:
            assert (P >=
                    0).all(), "All entries in the potentials need to be >=0 "
            k2, k3 = P.shape
        else:
            num_pot_P, k2, k3 = P.shape
            for P_entry in P:
                assert (
                    P_entry >=
                    0).all(), "All entries in each potential need to be >=0 "
            assert W.dtype == int, "Entries of weight matrix need to be integers to reference index of the potential"
            weight = W.data
            set_pot = set(weight)
            max_pot_W = max(set_pot)
            assert max_pot_W <= set_pot, "Indices in W refering to P need to be smaller than the number of potentials"
        assert (n == n2 & n2 ==
                n3), "X and W need to have compatible dimensions"
        assert (k == k2 & k2 ==
                k3), "X and P need to have compatible dimensions"
    if debug >= 3:
        listF = []  # store the belief matrices for each iteration
        listConverged = []  # store all L2 norms to previous iteration

    # --- create edge dictionaries
    row, col = W.nonzero()
    nodes = set(np.concatenate((row, col)))
    dict_edges_out = {}  # dictionary: i to all nodes j with edge (i->j)
    for node in nodes:
        dict_edges_out[node] = set()
    dict_edges_in = deepcopy(
        dict_edges_out)  # dictionary: i to all nodes j with edge (i<-j)

    for (i, j) in zip(row, col):
        dict_edges_out[i].add(j)
        dict_edges_in[j].add(i)

    if dim_pot == 3:
        dict_edges_pot = {
        }  # Dictionary: for each directed edge (i,j) -> index of the potential in P[index, :, :]
        for (i, j, d) in zip(row, col, weight):
            dict_edges_pot[(i, j)] = d

    # --- X -> X0: replace all-0-rows with all 1s (no need to normalize initial beliefs)
    implicitVector = 1 - 1 * to_explicit_bool_vector(
        X)  # indicator numpy array with 1s for rows with only 0s
    implicitVectorT = np.array(
        [implicitVector]).transpose()  # vertical 1 vector for implicit nodes
    X0 = X + implicitVectorT  # X0: prio beliefs: addition of [n x k] matrix with [n x 1] vector is ok

    F1 = X0  # old F: only for checking convergence (either because convergencePercantage not None or debug >= 2)
    F2 = X0.astype(
        float
    )  # new F: copy is necessary as to not change original X0 matrix when F2 is changed

    # --- Actual loop: each loop calculates (a) the new messages (with damping) and (b) the new beliefs
    converged = False
    actualNumIt = -1  # iterations start with 0th iteration
    while actualNumIt < numMaxIt and not converged:
        actualNumIt += 1

        # --- (a) calculate messages
        if actualNumIt == 0:
            # --- first pass (counts as 0th iteration): create message dictionaries and initialize messages with ones
            dict_messages_along_1 = {
            }  # dictionary: messages for each edge (i->j) in direction i->j
            dict_messages_against_1 = {
            }  # dictionary: messages for each edge (i<-j) in direction i->j
            default = np.ones(k)  # first message vector: all 1s
            for (i, j) in zip(row, col):
                dict_messages_along_1[(i, j)] = default
                dict_messages_against_1[(j, i)] = default
        else:
            # --- other iterations: calculate "messages_new" using message-passing with division (from F and messages)
            dict_messages_along_2 = {
            }  # new dictionary: messages for each edge (i->j) in direction i->j
            dict_messages_against_2 = {
            }  # new dictionary: messages for each edge (i<-j) in direction i->j
            for (i, j) in dict_messages_along_1.keys(
            ):  # also includes following case: "for (j,i) in dict_messages_against_1.keys()"
                if dim_pot == 3:  # need to reference the correct potential in case dim_pot == 3
                    Pot = P[dict_edges_pot[(i, j)] - 1, :, :]
                dict_messages_along_2[(
                    i, j)] = (F2[i] / dict_messages_against_1[(j, i)]).dot(
                        Pot)  # entry-wise division
                dict_messages_against_2[(j, i)] = (
                    F2[j] / dict_messages_along_1[(i, j)]).dot(Pot.transpose())
                # TODO above two lines can contain errors

            # --- assign new to old message dictionaries, and optionally damp messages
            if damping == 1:
                dict_messages_along_1 = dict_messages_along_2.copy(
                )  # requires shallow copy because of later division
                dict_messages_against_1 = dict_messages_against_2.copy()
            else:
                for (i, j) in dict_messages_along_1.keys():
                    dict_messages_along_1[(i,j)] = damping*dict_messages_along_2[(i,j)] + \
                                                   (1-damping)*dict_messages_along_1[(i,j)]
                for (i, j) in dict_messages_against_1.keys():
                    dict_messages_against_1[(i,j)] = damping*dict_messages_against_2[(i,j)] + \
                                                     (1-damping)*dict_messages_against_1[(i,j)]

        # --- (b) create new beliefs by multiplying prior beliefs with all incoming messages (pointing in both directions)
        for (i, f) in enumerate(F2):
            if not clamping or implicitVector[
                    i] == 0:  # only update beliefs if those are not explicit and clamped
                F2[i] = X0[
                    i]  # need to start multiplying from explicit beliefs, referencing the row with separate variable did not work out
                for j in dict_edges_out[i]:  # edges pointing away
                    F2[i] *= dict_messages_against_1[(j, i)]
                for j in dict_edges_in[i]:  # edges pointing inwards
                    F2[i] *= dict_messages_along_1[(j, i)]
                    # TODO line can contain errors

        # --- normalize beliefs [TODO: perhaps remove later to optimize except in last round]
        F2 = row_normalize_matrix(F2, norm='l1')

        # --- check convergence and store information if debug
        if convergencePercentage is not None or debug >= 2:
            F1z = to_centering_beliefs(F1)
            F2z = to_centering_beliefs(F2)
            actualPercentageConverged = matrix_convergence_percentage(
                F1z, F2z, threshold=convergenceThreshold)
            if convergencePercentage is not None \
                    and actualPercentageConverged >= convergencePercentage\
                    and actualNumIt > 0:  # end the loop early
                converged = True
            F1 = F2.copy(
            )  # save for comparing in *next* iteration, make copy since F entries get changed

        if debug == 3:
            listF.append(
                F2.copy()
            )  # stores (actualNumIt+1) values (copy is important as F2 is later overwritten)
            if actualNumIt > 0:
                listConverged.append(
                    actualPercentageConverged)  # stores actualNumIt values

    # --- Various return formats
    if debug <= 1:
        return F2
    elif debug == 2:
        return F2, actualNumIt, actualPercentageConverged
    else:
        return np.array(listF), actualNumIt, listConverged
示例#2
0
def test_linBP_undirected_Torus():
    print "\n-- 'linBP_undirected', 'eps_convergence_linbp' with Torus --"

    # -- Load W, create X and P
    W, n = load_W(join(data_directory, 'Torus_W.csv'), zeroindexing=False, delimiter=',')
    X = np.array(
    [[1, 0, 0],
     [0, 1, 0],
     [0, 0, 1],
     [0, 0, 0],
     [0, 0, 0],
     [0, 0, 0],
     [0, 0, 0],
     [0, 0, 0]])
    H = np.array(
    [[0.1, 0.8, 0.1],
     [0.8, 0.1, 0.1],
     [0.1, 0.1, 0.8]])
    print "W (dense):\n", W.todense()
    print "X:\n", X
    print "H:\n", H
    Hc = to_centering_beliefs(H)
    print "Hc:\n", Hc
    print

    # -- Other parameters
    eps = 0.4
    numMaxIt = 20

    eps_max = eps_convergence_linbp(Hc, W)
    print "eps_max: ", eps_max
    print "eps: ", eps
    Hc2 = Hc*eps
    print "P*eps:\n", Hc2
    print

    # --- linBP
    listF = linBP_undirected(X, W, Hc2, numIt=numMaxIt, debug=2)

    # --- Display BP results
    print "linBP results:"
    print "last two F:"
    print listF[-2]
    print listF[-1]
    print "\nValues for node 6 (zero indexing):"
    print listF[:, 6, :]

    # --- Visualize BP results
    filename = join(fig_directory, 'temp.pdf')
    print "\nVisualize values for node 3 (zero indexing):"
    node = 3
    plt.plot(listF[:, node, :], lw=2)
    plt.xlabel('# iterations')
    plt.ylabel('belief')
    plt.xlim(0, numMaxIt)

    print filename

    plt.savefig(filename, dpi=None, facecolor='w', edgecolor='w',
                orientation='portrait', papertype='letter', format='pdf',
                transparent=True, bbox_inches='tight', pad_inches=0.1,
                frameon=None)
    os.system("chmod 744 " + filename)  # first change permissions in order to open PDF
    os.system("open " + filename)       # open PDF
示例#3
0
def test_matrix_difference():
    print "\n-- 'matrix_difference' (cosine/cosine_ratio/l2), 'to_centering_beliefs' --"
    X0 = np.array([[2, 0, 0],
                   [2, 0, 2],
                   [0, 1, 0],
                   [0, 0, 3],
                   [0, 0, 3],
                   [1, 0, 2],
                   [0, 3, 3],
                   [0, 0, 0],
                   [0, 1, 0],
                   [0, 1, 0],
                   [9, 9, 9],
                   [9, 9, 9],
                   [100, 100, 100],])
    X1 = np.array([[1, 1, 2],
                   [2, 1, 2],
                   [3, 4, 0],
                   [1, 1, 2],
                   [2, 1, 1],
                   [1, 2, 2],
                   [1, 2, 3],
                   [0, 0, 0],
                   [1, 0, 0],
                   [0, 2, 0],
                   [9, 9, 9],
                   [8, 9, 9],
                   [100, 100, 101],])
    print "X0:\n", X0
    print "X1:\n", X1

    result = matrix_difference(X0, X1, similarity='cosine', vector=True)
    print "cosine:\n", result
    result = matrix_difference(X0, X1, similarity='cosine_ratio', vector=True)
    print "cosine_ratio:\n", result
    result = matrix_difference(X0, X1, similarity='l2', vector=True)
    print "l2:\n", result

    X0 = np.array([[ 1.       ,   0.       ,   0.        ],
                  [ 0.30804075,  0.56206462,  0.12989463],
                  [ 0.32434628,  0.33782686,  0.33782686],
                  [ 0.30804075,  0.12989463,  0.56206462],
                  [ 0.14009173,  0.71981654,  0.14009173],
                  [ 0.32273419,  0.21860539,  0.45866042],
                  [ 0.33804084,  0.32391832,  0.33804084],
                  [ 0.45866042,  0.21860539,  0.32273419]])
    X1 = np.array([[ 1.      ,    0.      ,    0.        ],
                  [ 0.22382029,  0.45296374,  0.32321597],
                  [ 0.32434628,  0.33782686,  0.33782686],
                  [ 0.22382029,  0.32321597,  0.45296374],
                  [ 0.2466463 ,  0.5067074 ,  0.2466463 ],
                  [ 0.32273419,  0.21860539,  0.45866042],
                  [ 0.33804084,  0.32391832,  0.33804084],
                  [ 0.45866042,  0.21860539,  0.32273419]])
    print "\nX0:\n", X0
    print "X1:\n", X1

    result = matrix_difference(X0, X1, similarity='cosine_ratio', vector=True)
    print "cosine:\n", result

    # X0z = row_normalize_matrix(X0, norm='zscores')
    # X1z = row_normalize_matrix(X1, norm='zscores')
    X0z = to_centering_beliefs(X0)
    X1z = to_centering_beliefs(X1)

    print "\nX0z:\n", X0z
    print "X1z:\n", X1z

    result = matrix_difference(X0z, X1z, similarity='cosine_ratio', vector=True)
    print "cosine zscores:\n", result

    # actualPercentageConverged = matrix_convergence_percentage(X0z, X1z, threshold=convergenceCosineSimilarity)

    X0 = np.array([1, 0, 0])
    X1 = np.array([1, 1, 0])
    print "\nX0:\n", X0
    print "X1:\n", X1
    result = matrix_difference(X0, X1, similarity='cosine_ratio', vector=True)
    print "cosine zscores:\n", result
示例#4
0
def test_transform_beliefs():
    print "\n-- 'check_normalized_beliefs', 'to_centering_beliefs' --"
    X = np.array([[1.0001, 0, 0]])
    print "X: ", X
    assert check_normalized_beliefs(X)
    print "X centered: ", to_centering_beliefs(X)

    Y = np.array([0.9999, 0, 0])
    print "Y: ", Y
    assert check_normalized_beliefs(Y)
    print "Y centered: ", to_centering_beliefs(Y)

    Z = np.array([[1.001, 0, 0]])
    print "Z: ", Z
    assert not check_normalized_beliefs(Z)

    W = np.array([0.999, 0, 0])
    print "W: ", W
    assert not check_normalized_beliefs(W)

    print "\n-- 'check_centered_beliefs', 'from_centering_beliefs'"
    Xc = np.array([[1.0001, -1, 0]])
    print "Xc: ", Xc
    assert check_centered_beliefs(Xc)
    print "Xc uncentered: ", from_centering_beliefs(Xc)

    Yc = np.array([0.9999, -1, 0])
    print "Yc: ", Yc
    assert check_centered_beliefs(Yc)
    print "Yc uncentered: ", from_centering_beliefs(Yc)

    Zc = np.array([[1.001, -1, 0]])
    print "Zc: ", Zc
    assert not check_centered_beliefs(Zc)

    Wc = np.array([0.999, -1, 0])
    print "Wc: ", Wc
    assert not check_centered_beliefs(Wc)


    print "\n--'to_centering_beliefs', 'from_centering_beliefs' for matrices --"
    X = np.array(   [[1,0,0],
                     [0.8,0.2,0],
                     [1./3,1./3,1./3],
                     [0,0,1],
                     [0,0,1],
                     [0.5,0,0.5]])
    print "X original:\n", X
    print "np.sum(X,1):\n", np.sum(X,1)
    print "X.sum(axis=1, keepdims=True):\n", X.sum(axis=1, keepdims=True)
    print "X.shape:", X.shape
    print "len(X.shape): ", len(X.shape)

    Xc = to_centering_beliefs(X)
    print "X centered:\n", Xc
    Y = from_centering_beliefs(Xc)
    print "X again un-centered:\n", Y

    fileNameX = join(data_directory, 'Torus_X.csv')
    X, _, _ = load_X(fileNameX, n=8, zeroindexing=False)
    X = X.dot(0.1)
    print "\nCentered X for Torus example as input\n", X
    Xc = from_centering_beliefs(X)
    print "X un-centered:\n", Xc


    X = np.array(   [[1,0,0]])
    print "\nX original:\n", X
    Xc = to_centering_beliefs(X)
    print "X centered:\n", Xc
    Y = from_centering_beliefs(Xc)
    print "X back non-centered:\n", Y

    X = np.array(   [1,0,0])
    print "\nX original:\n", X
    print "np.sum(X,0):", np.sum(X,0)
    print "X.sum(axis=0, keepdims=True):", X.sum(axis=0, keepdims=True)
    print "X.shape: ", X.shape
    print "len(X.shape): ", len(X.shape)
示例#5
0
    n_vec = [
        100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, 102400,
        204800, 409600, 819200, 1638400, 3276800
    ]
    repeat_vec = [20, 20, 20, 20, 20, 10, 10, 5, 3, 3, 3, 3, 3, 3, 3, 3]
    eps_max_tol = 1e-02
    h = 8
    d = 10

else:
    raise Warning("Incorrect choice!")

alpha0 = np.array([a, 1., 1.])
alpha0 = alpha0 / np.sum(alpha0)
H0 = create_parameterized_H(k, h, symmetric=False)
H0c = to_centering_beliefs(H0)

RANDOMSEED = None  # For repeatability
random.seed(RANDOMSEED)  # seeds some other python random generator
np.random.seed(
    seed=RANDOMSEED
)  # seeds the actually used numpy random generator; both are used and thus needed
print("CHOICE: {}".format(CHOICE))


def save_tuple(n, label, time):
    tuple = [str(datetime.datetime.now())]
    text = [n, label, time]
    tuple.extend(text)
    print("time {}: {}".format(label, time))
    save_csv_record(join(data_directory, csv_filename), tuple)
示例#6
0
def test_matrix_difference():
    print "\n-- 'matrix_difference' (cosine/cosine_ratio/l2), 'to_centering_beliefs' --"
    X0 = np.array([
        [2, 0, 0],
        [2, 0, 2],
        [0, 1, 0],
        [0, 0, 3],
        [0, 0, 3],
        [1, 0, 2],
        [0, 3, 3],
        [0, 0, 0],
        [0, 1, 0],
        [0, 1, 0],
        [9, 9, 9],
        [9, 9, 9],
        [100, 100, 100],
    ])
    X1 = np.array([
        [1, 1, 2],
        [2, 1, 2],
        [3, 4, 0],
        [1, 1, 2],
        [2, 1, 1],
        [1, 2, 2],
        [1, 2, 3],
        [0, 0, 0],
        [1, 0, 0],
        [0, 2, 0],
        [9, 9, 9],
        [8, 9, 9],
        [100, 100, 101],
    ])
    print "X0:\n", X0
    print "X1:\n", X1

    result = matrix_difference(X0, X1, similarity='cosine', vector=True)
    print "cosine:\n", result
    result = matrix_difference(X0, X1, similarity='cosine_ratio', vector=True)
    print "cosine_ratio:\n", result
    result = matrix_difference(X0, X1, similarity='l2', vector=True)
    print "l2:\n", result

    X0 = np.array([[1., 0., 0.], [0.30804075, 0.56206462, 0.12989463],
                   [0.32434628, 0.33782686, 0.33782686],
                   [0.30804075, 0.12989463, 0.56206462],
                   [0.14009173, 0.71981654, 0.14009173],
                   [0.32273419, 0.21860539, 0.45866042],
                   [0.33804084, 0.32391832, 0.33804084],
                   [0.45866042, 0.21860539, 0.32273419]])
    X1 = np.array([[1., 0., 0.], [0.22382029, 0.45296374, 0.32321597],
                   [0.32434628, 0.33782686, 0.33782686],
                   [0.22382029, 0.32321597, 0.45296374],
                   [0.2466463, 0.5067074, 0.2466463],
                   [0.32273419, 0.21860539, 0.45866042],
                   [0.33804084, 0.32391832, 0.33804084],
                   [0.45866042, 0.21860539, 0.32273419]])
    print "\nX0:\n", X0
    print "X1:\n", X1

    result = matrix_difference(X0, X1, similarity='cosine_ratio', vector=True)
    print "cosine:\n", result

    # X0z = row_normalize_matrix(X0, norm='zscores')
    # X1z = row_normalize_matrix(X1, norm='zscores')
    X0z = to_centering_beliefs(X0)
    X1z = to_centering_beliefs(X1)

    print "\nX0z:\n", X0z
    print "X1z:\n", X1z

    result = matrix_difference(X0z,
                               X1z,
                               similarity='cosine_ratio',
                               vector=True)
    print "cosine zscores:\n", result

    # actualPercentageConverged = matrix_convergence_percentage(X0z, X1z, threshold=convergenceCosineSimilarity)

    X0 = np.array([1, 0, 0])
    X1 = np.array([1, 1, 0])
    print "\nX0:\n", X0
    print "X1:\n", X1
    result = matrix_difference(X0, X1, similarity='cosine_ratio', vector=True)
    print "cosine zscores:\n", result
示例#7
0
def test_transform_beliefs():
    print "\n-- 'check_normalized_beliefs', 'to_centering_beliefs' --"
    X = np.array([[1.0001, 0, 0]])
    print "X: ", X
    assert check_normalized_beliefs(X)
    print "X centered: ", to_centering_beliefs(X)

    Y = np.array([0.9999, 0, 0])
    print "Y: ", Y
    assert check_normalized_beliefs(Y)
    print "Y centered: ", to_centering_beliefs(Y)

    Z = np.array([[1.001, 0, 0]])
    print "Z: ", Z
    assert not check_normalized_beliefs(Z)

    W = np.array([0.999, 0, 0])
    print "W: ", W
    assert not check_normalized_beliefs(W)

    print "\n-- 'check_centered_beliefs', 'from_centering_beliefs'"
    Xc = np.array([[1.0001, -1, 0]])
    print "Xc: ", Xc
    assert check_centered_beliefs(Xc)
    print "Xc uncentered: ", from_centering_beliefs(Xc)

    Yc = np.array([0.9999, -1, 0])
    print "Yc: ", Yc
    assert check_centered_beliefs(Yc)
    print "Yc uncentered: ", from_centering_beliefs(Yc)

    Zc = np.array([[1.001, -1, 0]])
    print "Zc: ", Zc
    assert not check_centered_beliefs(Zc)

    Wc = np.array([0.999, -1, 0])
    print "Wc: ", Wc
    assert not check_centered_beliefs(Wc)

    print "\n--'to_centering_beliefs', 'from_centering_beliefs' for matrices --"
    X = np.array([[1, 0, 0], [0.8, 0.2, 0], [1. / 3, 1. / 3, 1. / 3],
                  [0, 0, 1], [0, 0, 1], [0.5, 0, 0.5]])
    print "X original:\n", X
    print "np.sum(X,1):\n", np.sum(X, 1)
    print "X.sum(axis=1, keepdims=True):\n", X.sum(axis=1, keepdims=True)
    print "X.shape:", X.shape
    print "len(X.shape): ", len(X.shape)

    Xc = to_centering_beliefs(X)
    print "X centered:\n", Xc
    Y = from_centering_beliefs(Xc)
    print "X again un-centered:\n", Y

    fileNameX = join(data_directory, 'Torus_X.csv')
    X, _, _ = load_X(fileNameX, n=8, zeroindexing=False)
    X = X.dot(0.1)
    print "\nCentered X for Torus example as input\n", X
    Xc = from_centering_beliefs(X)
    print "X un-centered:\n", Xc

    X = np.array([[1, 0, 0]])
    print "\nX original:\n", X
    Xc = to_centering_beliefs(X)
    print "X centered:\n", Xc
    Y = from_centering_beliefs(Xc)
    print "X back non-centered:\n", Y

    X = np.array([1, 0, 0])
    print "\nX original:\n", X
    print "np.sum(X,0):", np.sum(X, 0)
    print "X.sum(axis=0, keepdims=True):", X.sum(axis=0, keepdims=True)
    print "X.shape: ", X.shape
    print "len(X.shape): ", len(X.shape)