def run(self): experiment = self.pipeline.experiment events = self.get_passed_object(experiment+'_events') tal_info = self.get_passed_object('tal_info') prob_pre = self.get_passed_object('prob_pre') prob_diff = self.get_passed_object('prob_diff') ctrl_prob_pre = self.get_passed_object('ctrl_prob_pre') ctrl_prob_diff0 = self.get_passed_object('ctrl_prob_diff0') ctrl_prob_diff250 = ctrl_prob_diff500 = ctrl_prob_diff1000 = None try: ctrl_prob_diff250 = self.get_passed_object('ctrl_prob_diff250') except: pass try: ctrl_prob_diff500 = self.get_passed_object('ctrl_prob_diff500') except: pass try: ctrl_prob_diff1000 = self.get_passed_object('ctrl_prob_diff1000') except: pass sessions = np.unique(events.session) self.pass_object('NUMBER_OF_SESSIONS', len(sessions)) self.pass_object('NUMBER_OF_ELECTRODES', len(tal_info)) session_data = [] all_durs_ev = np.array([]) all_amps_ev = np.array([]) all_freqs_ev = np.array([]) all_burfs_ev = np.array([]) all_durs = np.array([]) all_amps = np.array([]) all_freqs = np.array([]) all_burfs = np.array([]) session_summary_array = [] prob_array_idx = 0 for session in sessions: session_summary = SessionSummary() session_summary.sess_num = session session_events = events[events.session == session] n_sess_events = len(session_events) timestamps = session_events.mstime first_time_stamp = np.min(timestamps) last_time_stamp = np.max(timestamps) session_length = '%.2f' % ((last_time_stamp - first_time_stamp) / 60000.0) session_date = time.strftime('%d-%b-%Y', time.localtime(last_time_stamp/1000)) session_data.append([session, session_date, session_length]) session_name = 'Sess%02d' % session stim_tag = session_events[0].stimAnodeTag + '-' + session_events[0].stimCathodeTag isi_min = np.nanmin(session_events.isi) isi_max = np.nanmax(session_events.isi) isi_mid = (isi_max+isi_min) / 2.0 isi_halfrange = isi_max - isi_mid print 'Session =', session_name, ' StimTag =', stim_tag, ' ISI =', isi_mid, '+/-', isi_halfrange durs_ev = session_events.pulse_duration amps_ev = session_events.amplitude freqs_ev = session_events.pulse_frequency burfs_ev = session_events.burst_frequency all_durs_ev = np.hstack((all_durs_ev, durs_ev)) all_amps_ev = np.hstack((all_amps_ev, amps_ev)) all_freqs_ev = np.hstack((all_freqs_ev, freqs_ev)) all_burfs_ev = np.hstack((all_burfs_ev, burfs_ev)) durs = np.unique(durs_ev) amps = np.unique(amps_ev) freqs = np.unique(freqs_ev) burfs = np.unique(burfs_ev) session_summary.name = session_name session_summary.length = session_length session_summary.date = session_date session_summary.stimtag = stim_tag session_summary.isi_mid = isi_mid session_summary.isi_half_range = isi_halfrange session_prob_pre = prob_pre[prob_array_idx:prob_array_idx+n_sess_events] session_prob_diff = prob_diff[prob_array_idx:prob_array_idx+n_sess_events] session_ctrl_prob_pre = ctrl_prob_pre session_ctrl_prob_diff = ctrl_prob_diff1000 if durs[-1]==1000 else ctrl_prob_diff500 if durs[-1]==500 else ctrl_prob_diff250 all_durs = np.hstack((all_durs, durs)) all_amps = np.hstack((all_amps, amps)) all_freqs = np.hstack((all_freqs, freqs)) all_burfs = np.hstack((all_burfs, burfs)) ev_vals = None param_grid = None if experiment == 'PS1': ev_vals = [freqs_ev, durs_ev] param_grid = [freqs, durs] session_summary.constant_name = 'Amplitude' session_summary.constant_value = amps[0] session_summary.constant_unit = 'mA' session_summary.parameter1 = 'Pulse Frequency' session_summary.parameter2 = 'Duration' elif experiment == 'PS2': ev_vals = [freqs_ev, amps_ev] param_grid = [freqs, amps] session_summary.constant_name = 'Duration' session_summary.constant_value = durs[-1] session_summary.constant_unit = 'ms' session_summary.parameter1 = 'Pulse Frequency' session_summary.parameter2 = 'Amplitude' elif experiment == 'PS3': ev_vals = [freqs_ev, burfs_ev] param_grid = [freqs, burfs] session_summary.constant_name = 'Amplitude' session_summary.constant_value = amps[0] session_summary.constant_unit = 'mA' session_summary.parameter1 = 'Pulse Frequency' session_summary.parameter2 = 'Burst Frequency' delta_stats = DeltaStats(2, ev_vals, param_grid, session_prob_pre, session_prob_diff, session_ctrl_prob_pre, session_ctrl_prob_diff, 1.0/3.0) delta_stats.run() anova = anova_test(ev_vals, param_grid, session_prob_diff) if anova is not None: session_summary.anova_fvalues = anova[0] session_summary.anova_pvalues = anova[1] data_point_indexes_left = np.arange(1,len(param_grid[0])+2) data_point_indexes_right = np.arange(1,len(param_grid[1])+2) # computting y axis limits min_plot, max_plot = delta_stats.y_range() ylim = [min_plot-0.1*(max_plot-min_plot), max_plot+0.1*(max_plot-min_plot)] x_tick_labels = ['CONTROL'] + [x if x>0 else 'PULSE' for x in param_grid[0]] session_summary.plot_data_dict[(0,0)] = PlotData(x=data_point_indexes_left, y=delta_stats.mean_all[0], yerr=delta_stats.stdev_all[0], x_tick_labels=x_tick_labels, ylim=ylim) session_summary.plot_data_dict[(1,0)] = PlotData(x=data_point_indexes_left, y=delta_stats.mean_low[0], yerr=delta_stats.stdev_low[0], x_tick_labels=x_tick_labels, ylim=ylim) session_summary.plot_data_dict[(2,0)] = PlotData(x=data_point_indexes_left, y=delta_stats.mean_high[0], yerr=delta_stats.stdev_high[0], x_tick_labels=x_tick_labels, ylim=ylim) x_tick_labels = ['CONTROL'] + list(param_grid[1]) session_summary.plot_data_dict[(0,1)] = PlotData(x=data_point_indexes_right, y=delta_stats.mean_all[1], yerr=delta_stats.stdev_all[1], x_tick_labels=x_tick_labels, ylim=ylim) session_summary.plot_data_dict[(1,1)] = PlotData(x=data_point_indexes_right, y=delta_stats.mean_low[1], yerr=delta_stats.stdev_low[1], x_tick_labels=x_tick_labels, ylim=ylim) session_summary.plot_data_dict[(2,1)] = PlotData(x=data_point_indexes_right, y=delta_stats.mean_high[1], yerr=delta_stats.stdev_high[1], x_tick_labels=x_tick_labels, ylim=ylim) session_summary_array.append(session_summary) prob_array_idx += len(session_events) self.pass_object('SESSION_DATA', session_data) self.pass_object('session_summary_array', session_summary_array) isi_min = np.nanmin(events.isi) isi_max = np.nanmax(events.isi) isi_mid = (isi_max+isi_min) / 2.0 isi_halfrange = isi_max - isi_mid print 'ISI =', isi_mid, '+/-', isi_halfrange self.pass_object('CUMULATIVE_ISI_MID',isi_mid) self.pass_object('CUMULATIVE_ISI_HALF_RANGE',isi_halfrange) durs = np.unique(all_durs) amps = np.unique(all_amps) freqs = np.unique(all_freqs) burfs = np.unique(all_burfs) ctrl_prob_diff = ctrl_prob_diff1000 if durs[-1]==1000 else ctrl_prob_diff500 if durs[-1]==500 else ctrl_prob_diff250 ev_vals = None param_grid = None if experiment == 'PS1': ev_vals = [all_freqs_ev, all_durs_ev] param_grid = [freqs, durs] self.pass_object('CUMULATIVE_PARAMETER1', 'Pulse Frequency') self.pass_object('CUMULATIVE_PARAMETER2', 'Duration') elif experiment == 'PS2': ev_vals = [all_freqs_ev, all_amps_ev] param_grid = [freqs, amps] self.pass_object('CUMULATIVE_PARAMETER1', 'Pulse Frequency') self.pass_object('CUMULATIVE_PARAMETER2', 'Amplitude') elif experiment == 'PS3': ev_vals = [all_freqs_ev, all_burfs_ev] param_grid = [freqs, burfs] self.pass_object('CUMULATIVE_PARAMETER1', 'Pulse Frequency') self.pass_object('CUMULATIVE_PARAMETER2', 'Burst Frequency') delta_stats = DeltaStats(2, ev_vals, param_grid, prob_pre, prob_diff, ctrl_prob_pre, ctrl_prob_diff, 1.0/3.0) delta_stats.run() data_point_indexes_left = np.arange(1,len(param_grid[0])+2) data_point_indexes_right = np.arange(1,len(param_grid[1])+2) # computing y axis limits min_plot, max_plot = delta_stats.y_range() ylim = [min_plot-0.1*(max_plot-min_plot), max_plot+0.1*(max_plot-min_plot)] cumulative_plot_data_dict = OrderedDict() x_tick_labels = ['CONTROL'] + [x if x>0 else 'PULSE' for x in param_grid[0]] cumulative_plot_data_dict[(0,0)] = PlotData(x=data_point_indexes_left, y=delta_stats.mean_all[0], yerr=delta_stats.stdev_all[0], x_tick_labels=x_tick_labels, ylim=ylim) cumulative_plot_data_dict[(1,0)] = PlotData(x=data_point_indexes_left, y=delta_stats.mean_low[0], yerr=delta_stats.stdev_low[0], x_tick_labels=x_tick_labels, ylim=ylim) cumulative_plot_data_dict[(2,0)] = PlotData(x=data_point_indexes_left, y=delta_stats.mean_high[0], yerr=delta_stats.stdev_high[0], x_tick_labels=x_tick_labels, ylim=ylim) x_tick_labels = ['CONTROL'] + list(param_grid[1]) cumulative_plot_data_dict[(0,1)] = PlotData(x=data_point_indexes_right, y=delta_stats.mean_all[1], yerr=delta_stats.stdev_all[1], x_tick_labels=x_tick_labels, ylim=ylim) cumulative_plot_data_dict[(1,1)] = PlotData(x=data_point_indexes_right, y=delta_stats.mean_low[1], yerr=delta_stats.stdev_low[1], x_tick_labels=x_tick_labels, ylim=ylim) cumulative_plot_data_dict[(2,1)] = PlotData(x=data_point_indexes_right, y=delta_stats.mean_high[1], yerr=delta_stats.stdev_high[1], x_tick_labels=x_tick_labels, ylim=ylim) self.pass_object('cumulative_plot_data_dict', cumulative_plot_data_dict)
def run(self): subject = self.pipeline.subject experiment = self.pipeline.experiment channels = self.get_passed_object('channels') tal_info = self.get_passed_object('tal_info') loc_info = self.get_passed_object('loc_info') xval_output = self.get_passed_object('xval_output') ps_table = self.get_passed_object('ps_table') sessions = sorted(ps_table.session.unique()) self.pass_object('NUMBER_OF_SESSIONS', len(sessions)) self.pass_object('NUMBER_OF_ELECTRODES', len(channels)) thresh = xval_output[-1].jstat_thresh self.pass_object('AUC', xval_output[-1].auc) param1_name = param2_name = None const_param_name = const_unit = None if experiment == 'PS1': param1_name = 'Pulse Frequency' param2_name = 'Duration' const_param_name = 'Amplitude' const_unit = 'mA' elif experiment == 'PS2': param1_name = 'Pulse Frequency' param2_name = 'Amplitude' const_param_name = 'Duration' const_unit = 'ms' elif experiment == 'PS3': param1_name = 'Burst Frequency' param2_name = 'Pulse Frequency' const_param_name = 'Duration' const_unit = 'ms' self.pass_object('CUMULATIVE_PARAMETER1', param1_name) self.pass_object('CUMULATIVE_PARAMETER2', param2_name) session_data = [] session_summary_array = [] for session in sessions: ps_session_table = ps_table[ps_table.session==session] session_summary = SessionSummary() session_summary.sess_num = session first_time_stamp = ps_session_table.mstime.min() last_time_stamp = ps_session_table.mstime.max() session_length = '%.2f' % ((last_time_stamp - first_time_stamp) / 60000.0) session_date = time.strftime('%d-%b-%Y', time.localtime(last_time_stamp/1000)) session_data.append([session, session_date, session_length]) session_name = 'Sess%02d' % session stim_anode_tag = ps_session_table.stimAnodeTag.values[0] stim_cathode_tag = ps_session_table.stimCathodeTag.values[0] stim_tag = stim_anode_tag + '-' + stim_cathode_tag if loc_info[stim_tag] != '': stim_tag += ' (%s)' % loc_info[stim_anode_tag] isi_min = ps_session_table.isi.min() isi_max = ps_session_table.isi.max() isi_mid = (isi_max+isi_min) / 2.0 isi_halfrange = isi_max - isi_mid print 'Session =', session_name, ' StimTag =', stim_tag, ' ISI =', isi_mid, '+/-', isi_halfrange session_summary.name = session_name session_summary.length = session_length session_summary.date = session_date session_summary.stimtag = stim_tag session_summary.isi_mid = isi_mid session_summary.isi_half_range = isi_halfrange session_summary.parameter1 = param1_name session_summary.parameter2 = param2_name session_summary.constant_name = const_param_name session_summary.constant_value = ps_session_table[const_param_name].unique()[0] session_summary.constant_unit = const_unit anova = anova_test(ps_session_table, param1_name, param2_name) if anova is not None: session_summary.anova_fvalues = anova[0] session_summary.anova_pvalues = anova[1] joblib.dump(anova, self.get_path_to_resource_in_workspace(subject + '-' + experiment + '-anova.pkl')) session_summary.plots = delta_plot_data(ps_session_table[ps_session_table['prob_pre']<thresh], param1_name, param2_name) session_summary_array.append(session_summary) self.pass_object('SESSION_DATA', session_data) self.pass_object('session_summary_array', session_summary_array) isi_min = ps_table.isi.min() isi_max = ps_table.isi.max() isi_mid = (isi_max+isi_min) / 2.0 isi_halfrange = isi_max - isi_mid print 'ISI =', isi_mid, '+/-', isi_halfrange self.pass_object('CUMULATIVE_ISI_MID', isi_mid) self.pass_object('CUMULATIVE_ISI_HALF_RANGE', isi_halfrange) cumulative_plots = delta_plot_data(ps_table[ps_table['prob_pre']<thresh], param1_name, param2_name) self.pass_object('cumulative_plots', cumulative_plots)