示例#1
0
    def extractFields(self, bvec):

        nD = int(bvec.shape[0] / 3)
        bvec = np.reshape(bvec, (3, nD))

        R = MagUtils.rotationMatrix(self.prism.pinc, self.prism.pdec)
        bvec = R.dot(bvec)

        if self.uType == "bx":
            u = utils.mkvc(bvec[0, :])

        if self.uType == "by":
            u = utils.mkvc(bvec[1, :])

        if self.uType == "bz":
            u = utils.mkvc(bvec[2, :])

        if self.uType == "tf":
            # Projection matrix
            Ptmi = MagUtils.dipazm_2_xyz(
                self.survey.source_field.parameters[1],
                self.survey.source_field.parameters[2])

            u = utils.mkvc(Ptmi.dot(bvec))

        return u
示例#2
0
        def test_regularizationMesh(self):

            for i, mesh in enumerate(self.meshlist):

                print("Testing {0:d}D".format(mesh.dim))

                # mapping = r.mapPair(mesh)
                # reg = r(mesh, mapping=mapping)
                # m = np.random.rand(mapping.nP)

                if mesh.dim == 1:
                    indAct = utils.mkvc(mesh.gridCC <= 0.8)
                elif mesh.dim == 2:
                    indAct = utils.mkvc(
                        mesh.gridCC[:, -1] <= 2 *
                        np.sin(2 * np.pi * mesh.gridCC[:, 0]) + 0.5)
                elif mesh.dim == 3:
                    indAct = utils.mkvc(
                        mesh.gridCC[:, -1] <= 2 *
                        np.sin(2 * np.pi * mesh.gridCC[:, 0]) +
                        0.5 * 2 * np.sin(2 * np.pi * mesh.gridCC[:, 1]) + 0.5)

                regmesh = regularization.RegularizationMesh(mesh,
                                                            indActive=indAct)

                assert (regmesh.vol == mesh.vol[indAct]).all()
示例#3
0
    def test_Simulation3DCellCentered_Neumann(self, tolerance=0.1):
        simulation = dc.Simulation3DCellCentered(self.mesh,
                                                 survey=self.survey,
                                                 sigma=self.sigma,
                                                 bc_type="Neumann")
        simulation.solver = Solver

        f = simulation.fields(self.sigma)
        eNumeric = utils.mkvc(f[self.survey.source_list, "e"])
        jNumeric = utils.mkvc(f[self.survey.source_list, "j"])
        errE = np.linalg.norm(jNumeric[self.ROIfaceInds] - self.J_analytic[
            self.ROIfaceInds]) / np.linalg.norm(
                self.J_analytic[self.ROIfaceInds])
        errJ = np.linalg.norm(eNumeric[self.ROIfaceInds] - self.E_analytic[
            self.ROIfaceInds]) / np.linalg.norm(
                self.E_analytic[self.ROIfaceInds])
        if errE < tolerance and errJ < tolerance:
            print("\n")
            print("E field error =", errE)
            print("J field error =", errJ)
            passed = True
            print(
                ">> DC analytic test for Simulation3DCellCentered_Neumann passed"
            )
        else:
            print("\n")
            print("E field error =", errE)
            print("J field error =", errJ)
            passed = False
            print(
                ">> DC analytic test for Simulation3DCellCentered_Neumann failed"
            )
        self.assertTrue(passed)
示例#4
0
    def test_Simulation3DNodal(self, tolerance=0.1):
        simulation = dc.simulation.Simulation3DNodal(self.mesh,
                                                     survey=self.survey,
                                                     sigma=self.sigma)
        simulation.solver = Solver

        f = simulation.fields(self.sigma)
        eNumeric = utils.mkvc(f[self.survey.source_list, "e"])
        jNumeric = utils.mkvc(f[self.survey.source_list, "j"])
        # also test if we can get charge and charge_density
        f[:, "charge"]
        f[:, "charge_density"]

        errE = np.linalg.norm(jNumeric[self.ROIedgeInds] - self.J_analytic[
            self.ROIedgeInds]) / np.linalg.norm(
                self.J_analytic[self.ROIedgeInds])
        errJ = np.linalg.norm(eNumeric[self.ROIedgeInds] - self.E_analytic[
            self.ROIedgeInds]) / np.linalg.norm(
                self.E_analytic[self.ROIedgeInds])
        if errE < tolerance and errJ < tolerance:
            print("\n")
            print("E field error =", errE)
            print("J field error =", errJ)
            passed = True
            print(">> DC analytic test for Simulation3DNodal passed")
        else:
            print("\n")
            print("E field error =", errE)
            print("J field error =", errJ)
            passed = False
            print(">> DC analytic test for Simulation3DNodal failed")
        self.assertTrue(passed)
示例#5
0
def sumCylinderCharges(xc, zc, r, qSecondary):
    chargeRegionVerts = getCylinderPoints(xc, zc, r + 0.5)

    codes = chargeRegionVerts.shape[0] * [Path.LINETO]
    codes[0] = Path.MOVETO
    codes[-1] = Path.CLOSEPOLY

    chargeRegionPath = Path(chargeRegionVerts, codes)
    CCLocs = mesh.gridCC
    chargeRegionInsideInd = np.where(chargeRegionPath.contains_points(CCLocs))

    plateChargeLocs = CCLocs[chargeRegionInsideInd]
    plateCharge = qSecondary[chargeRegionInsideInd]
    posInd = np.where(plateCharge >= 0)
    negInd = np.where(plateCharge < 0)
    qPos = utils.mkvc(plateCharge[posInd])
    qNeg = utils.mkvc(plateCharge[negInd])

    qPosLoc = plateChargeLocs[posInd, :][0]
    qNegLoc = plateChargeLocs[negInd, :][0]

    # qPosData = np.vstack([qPosLoc[:, 0], qPosLoc[:, 1], qPos]).T
    # qNegData = np.vstack([qNegLoc[:, 0], qNegLoc[:, 1], qNeg]).T

    if qNeg.shape == (0, ) or qPos.shape == (0, ):
        qNegAvgLoc = np.r_[-10, -10]
        qPosAvgLoc = np.r_[+10, -10]
    else:
        qNegAvgLoc = np.average(qNegLoc, axis=0, weights=qNeg)
        qPosAvgLoc = np.average(qPosLoc, axis=0, weights=qPos)

    qPosSum = np.sum(qPos)
    qNegSum = np.sum(qNeg)

    return qPosSum, qNegSum, qPosAvgLoc, qNegAvgLoc
示例#6
0
def sum_term(rho1, rho2, h, r):
    m = utils.mkvc(np.arange(1, infinity + 1))
    k = (rho2 - rho1) / (rho2 + rho1)
    return np.sum(
        ((k ** m.T) * np.ones_like(utils.mkvc(r, 2)))
        / np.sqrt(1.0 + (2.0 * h * m.T / utils.mkvc(r, 2)) ** 2),
        1,
    )
示例#7
0
def MagSphereAnaFunA(x, y, z, R, xc, yc, zc, chi, Bo, flag):
    """Computing boundary condition using Congrous sphere method.
    This is designed for secondary field formulation.
    >> Input
    mesh:   Mesh class
    Bo:     np.array([Box, Boy, Boz]): Primary magnetic flux
    Chi:    susceptibility at cell volume

    .. math::

        \\vec{B}(r) = \\frac{\mu_0}{4\pi}\\frac{m}{\| \\vec{r}-\\vec{r}_0\|^3}[3\hat{m}\cdot\hat{r}-\hat{m}]

    """
    if ~np.size(x) == np.size(y) == np.size(z):
        print("Specify same size of x, y, z")
        return
    dim = x.shape
    x = utils.mkvc(x)
    y = utils.mkvc(y)
    z = utils.mkvc(z)

    Bot = np.sqrt(sum(Bo ** 2))
    mx = Bo[0] / Bot
    my = Bo[1] / Bot
    mz = Bo[2] / Bot

    ind = np.sqrt((x - xc) ** 2 + (y - yc) ** 2 + (z - zc) ** 2) < R

    Bx = np.zeros(x.size)
    By = np.zeros(x.size)
    Bz = np.zeros(x.size)

    # Inside of the sphere
    rf2 = 3 / (chi + 3) * (1 + chi)
    if flag == "total":
        Bx[ind] = Bo[0] * (rf2)
        By[ind] = Bo[1] * (rf2)
        Bz[ind] = Bo[2] * (rf2)
    elif flag == "secondary":
        Bx[ind] = Bo[0] * (rf2) - Bo[0]
        By[ind] = Bo[1] * (rf2) - Bo[1]
        Bz[ind] = Bo[2] * (rf2) - Bo[2]

    r = utils.mkvc(np.sqrt((x - xc) ** 2 + (y - yc) ** 2 + (z - zc) ** 2))
    V = 4 * np.pi * R ** 3 / 3
    mom = Bot / mu_0 * chi / (1 + chi / 3) * V
    const = mu_0 / (4 * np.pi) * mom
    mdotr = (
        mx * (x[~ind] - xc) / r[~ind]
        + my * (y[~ind] - yc) / r[~ind]
        + mz * (z[~ind] - zc) / r[~ind]
    )
    Bx[~ind] = const / (r[~ind] ** 3) * (3 * mdotr * (x[~ind] - xc) / r[~ind] - mx)
    By[~ind] = const / (r[~ind] ** 3) * (3 * mdotr * (y[~ind] - yc) / r[~ind] - my)
    Bz[~ind] = const / (r[~ind] ** 3) * (3 * mdotr * (z[~ind] - zc) / r[~ind] - mz)

    return Bx, By, Bz
示例#8
0
def sum_term_deriv(rho1, rho2, h, r):
    m = utils.mkvc(np.arange(1, infinity + 1))
    k = (rho2 - rho1) / (rho2 + rho1)
    return np.sum(
        ((k ** m.T) * np.ones_like(utils.mkvc(r, 2)))
        / (1.0 + (2.0 * h * m.T / utils.mkvc(r, 2)) ** 2) ** (3.0 / 2.0)
        * ((2.0 * h * m.T) ** 2 / utils.mkvc(r, 2) ** 3),
        1,
    )
示例#9
0
    def test_SetGet(self):
        F = self.F
        nSrc = F.survey.nSrc
        nT = F.simulation.nT + 1
        e = np.random.rand(F.mesh.nE, nSrc, nT)
        F[:, "e"] = e
        b = np.random.rand(F.mesh.nF, nSrc, nT)
        F[:, "b"] = b

        self.assertTrue(np.all(F[:, "e"] == e))
        self.assertTrue(np.all(F[:, "b"] == b))
        F[:] = {"b": b, "e": e}
        self.assertTrue(np.all(F[:, "e"] == e))
        self.assertTrue(np.all(F[:, "b"] == b))

        for s in zero_types:
            F[:, "b"] = s
            self.assertTrue(np.all(F[:, "b"] == b * 0))

        b = np.random.rand(F.mesh.nF, 1, nT)
        F[self.Src0, "b"] = b
        self.assertTrue(np.all(F[self.Src0, "b"] == b[:, 0, :]))

        b = np.random.rand(F.mesh.nF, 1, nT)
        F[self.Src0, "b", 0] = b[:, :, 0]
        self.assertTrue(
            np.all(F[self.Src0, "b", 0] == utils.mkvc(b[:, 0, 0], 2)))

        phi = np.random.rand(F.mesh.nC, 2, nT)
        F[[self.Src0, self.Src1], "phi"] = phi
        self.assertTrue(np.all(F[[self.Src0, self.Src1], "phi"] == phi))

        fdict = F[:]
        self.assertTrue(type(fdict) is dict)
        self.assertTrue(sorted([k for k in fdict]) == ["b", "e", "phi"])

        b = np.random.rand(F.mesh.nF, 2, nT)
        F[[self.Src0, self.Src1], "b"] = b
        self.assertTrue(F[self.Src0]["b"].shape == (F.mesh.nF, nT))
        self.assertTrue(F[self.Src0, "b"].shape == (F.mesh.nF, nT))
        self.assertTrue(np.all(F[self.Src0, "b"] == b[:, 0, :]))
        self.assertTrue(np.all(F[self.Src1, "b"] == b[:, 1, :]))
        self.assertTrue(
            np.all(F[self.Src0, "b", 1] == utils.mkvc(b[:, 0, 1], 2)))
        self.assertTrue(
            np.all(F[self.Src1, "b", 1] == utils.mkvc(b[:, 1, 1], 2)))
        self.assertTrue(
            np.all(F[self.Src0, "b", 4] == utils.mkvc(b[:, 0, 4], 2)))
        self.assertTrue(
            np.all(F[self.Src1, "b", 4] == utils.mkvc(b[:, 1, 4], 2)))

        b = np.random.rand(F.mesh.nF, 2, nT)
        F[[self.Src0, self.Src1], "b", 0] = b[:, :, 0]
示例#10
0
def refine_box(mesh):

    # Refine for sphere
    xp, yp, zp = np.meshgrid([-55.0, 50.0], [-50.0, 50.0], [-40.0, 20.0])
    xyz = np.c_[mkvc(xp), mkvc(yp), mkvc(zp)]

    mesh = refine_tree_xyz(mesh,
                           xyz,
                           octree_levels=[2],
                           method="box",
                           finalize=False)

    return mesh
示例#11
0
        def test_regularization_ActiveCells(self):
            for R in dir(regularization):
                r = getattr(regularization, R)
                if not inspect.isclass(r):
                    continue
                if not issubclass(r, objective_function.BaseObjectiveFunction):
                    continue
                if r.__name__ in IGNORE_ME:
                    continue

                for i, mesh in enumerate(self.meshlist[:1]):

                    print("Testing Active Cells {0:d}D".format((mesh.dim)))

                    if mesh.dim == 1:
                        indActive = utils.mkvc(mesh.gridCC <= 0.8)
                    elif mesh.dim == 2:
                        indActive = utils.mkvc(mesh.gridCC[:, -1] <= (
                            2 * np.sin(2 * np.pi * mesh.gridCC[:, 0]) + 0.5))
                    elif mesh.dim == 3:
                        indActive = utils.mkvc(mesh.gridCC[:, -1] <= (
                            2 * np.sin(2 * np.pi * mesh.gridCC[:, 0]) +
                            0.5 * 2 * np.sin(2 * np.pi * mesh.gridCC[:, 1]) +
                            0.5))

                    if mesh.dim < 3 and r.__name__[-1] == "z":
                        continue
                    if mesh.dim < 2 and r.__name__[-1] == "y":
                        continue

                    for indAct in [
                            indActive,
                            indActive.nonzero()[0],
                    ]:  # test both bool and integers
                        if indAct.dtype != bool:
                            nP = indAct.size
                        else:
                            nP = int(indAct.sum())

                        reg = r(mesh,
                                indActive=indAct,
                                mapping=maps.IdentityMap(nP=nP))
                        m = np.random.rand(mesh.nC)[indAct]
                        mref = np.ones_like(m) * np.mean(m)
                        reg.mref = mref

                        print("--- Checking {} ---\n".format(
                            reg.__class__.__name__))

                        passed = reg.test(m, eps=TOL)
                        self.assertTrue(passed)
示例#12
0
def refine_topography(mesh):

    # Define topography and refine
    [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
    zz = -3 * np.exp((xx**2 + yy**2) / 60**2) + 45.0
    topo = np.c_[mkvc(xx), mkvc(yy), mkvc(zz)]

    mesh = refine_tree_xyz(mesh,
                           topo,
                           octree_levels=[3, 2],
                           method="surface",
                           finalize=False)

    return mesh
示例#13
0
    def setUp(self):

        # Define inducing field and sphere parameters
        H0 = (50000.0, 60.0, 250.0)
        # H0 = (50000., 90., 0.)
        self.b0 = mag.analytics.IDTtoxyz(-H0[1], H0[2], H0[0])
        self.rad = 2.0
        self.chi = 0.01

        # Define a mesh
        cs = 0.2
        hxind = [(cs, 21)]
        hyind = [(cs, 21)]
        hzind = [(cs, 21)]
        mesh = discretize.TensorMesh([hxind, hyind, hzind], "CCC")

        # Get cells inside the sphere
        sph_ind = getIndicesSphere([0.0, 0.0, 0.0], self.rad, mesh.gridCC)

        # Adjust susceptibility for volume difference
        Vratio = (4.0 / 3.0 * np.pi * self.rad**3.0) / (np.sum(sph_ind) *
                                                        cs**3.0)
        model = np.ones(mesh.nC) * self.chi * Vratio
        self.model = model[sph_ind]

        # Creat reduced identity map for Linear Pproblem
        idenMap = maps.IdentityMap(nP=int(sum(sph_ind)))

        # Create plane of observations
        xr = np.linspace(-20, 20, nx)
        yr = np.linspace(-20, 20, ny)
        self.xr = xr
        self.yr = yr
        X, Y = np.meshgrid(xr, yr)
        components = ["bx", "by", "bz", "tmi"]

        # Move obs plane 2 radius away from sphere
        Z = np.ones((xr.size, yr.size)) * 2.0 * self.rad
        self.locXyz = np.c_[utils.mkvc(X), utils.mkvc(Y), utils.mkvc(Z)]
        rxLoc = mag.Point(self.locXyz, components=components)
        srcField = mag.SourceField([rxLoc], parameters=H0)
        self.survey = mag.Survey(srcField)

        self.sim = mag.Simulation3DIntegral(
            mesh,
            survey=self.survey,
            chiMap=idenMap,
            actInd=sph_ind,
            store_sensitivities="forward_only",
        )
示例#14
0
    def test_rotationMatrixFromNormals(self):
        np.random.seed(0)
        v0 = np.random.rand(3)
        v0 *= 1.0 / np.linalg.norm(v0)

        np.random.seed(5)
        v1 = np.random.rand(3)
        v1 *= 1.0 / np.linalg.norm(v1)

        Rf = utils.coord_utils.rotationMatrixFromNormals(v0, v1)
        Ri = utils.coord_utils.rotationMatrixFromNormals(v1, v0)

        self.assertTrue(np.linalg.norm(utils.mkvc(Rf.dot(v0) - v1)) < tol)
        self.assertTrue(np.linalg.norm(utils.mkvc(Ri.dot(v1) - v0)) < tol)
示例#15
0
    def test_rotatePointsFromNormals(self):
        np.random.seed(10)
        v0 = np.random.rand(3)
        v0 *= 1.0 / np.linalg.norm(v0)

        np.random.seed(15)
        v1 = np.random.rand(3)
        v1 *= 1.0 / np.linalg.norm(v1)

        v2 = utils.mkvc(
            utils.coord_utils.rotatePointsFromNormals(
                utils.mkvc(v0, 2).T, v0, v1))

        self.assertTrue(np.linalg.norm(v2 - v1) < tol)
示例#16
0
def sumCylinderCharges(xc, zc, r, qSecondary):
    chargeRegionVerts = getCylinderPoints(xc, zc, r + 0.5)

    codes = chargeRegionVerts.shape[0] * [Path.LINETO]
    codes[0] = Path.MOVETO
    codes[-1] = Path.CLOSEPOLY

    chargeRegionPath = Path(chargeRegionVerts, codes)
    CCLocs = mesh.gridCC
    chargeRegionInsideInd = np.where(chargeRegionPath.contains_points(CCLocs))

    plateChargeLocs = CCLocs[chargeRegionInsideInd]
    plateCharge = qSecondary[chargeRegionInsideInd]
    posInd = np.where(plateCharge >= 0)
    negInd = np.where(plateCharge < 0)
    qPos = utils.mkvc(plateCharge[posInd])
    qNeg = utils.mkvc(plateCharge[negInd])

    qPosLoc = plateChargeLocs[posInd, :][0]
    qNegLoc = plateChargeLocs[negInd, :][0]

    # qPosData = np.vstack([qPosLoc[:, 0], qPosLoc[:, 1], qPos]).T
    # qNegData = np.vstack([qNegLoc[:, 0], qNegLoc[:, 1], qNeg]).T

    if qNeg.shape == (0,) or qPos.shape == (0,):
        qNegAvgLoc = np.r_[-10, -10]
        qPosAvgLoc = np.r_[+10, -10]
    else:
        qNegAvgLoc = np.average(qNegLoc, axis=0, weights=qNeg)
        qPosAvgLoc = np.average(qPosLoc, axis=0, weights=qPos)

    qPosSum = np.sum(qPos)
    qNegSum = np.sum(qNeg)

    # # Check things by plotting
    # fig = plt.figure()
    # ax = fig.add_subplot(111)
    # platePatch = patches.PathPatch(platePath, facecolor='none', lw=2)
    # ax.add_patch(platePatch)
    # chargeRegionPatch = patches.PathPatch(chargeRegionPath, facecolor='none', lw=2)
    # ax.add_patch(chargeRegionPatch)
    # plt.scatter(qNegAvgLoc[0],qNegAvgLoc[1],color='b')
    # plt.scatter(qPosAvgLoc[0],qPosAvgLoc[1],color='r')
    # ax.set_xlim(-15,5)
    # ax.set_ylim(-25,-5)
    # plt.axes().set_aspect('equal')
    # plt.show()

    return qPosSum, qNegSum, qPosAvgLoc, qNegAvgLoc
    def setUp(self):

        # Define sphere parameters
        self.rad = 2.0
        self.rho = 0.1

        # Define a mesh
        cs = 0.2
        hxind = [(cs, 21)]
        hyind = [(cs, 21)]
        hzind = [(cs, 21)]
        mesh = discretize.TensorMesh([hxind, hyind, hzind], "CCC")

        # Get cells inside the sphere
        sph_ind = getIndicesSphere([0.0, 0.0, 0.0], self.rad, mesh.gridCC)

        # Adjust density for volume difference
        Vratio = (4.0 / 3.0 * np.pi * self.rad**3.0) / (np.sum(sph_ind) *
                                                        cs**3.0)
        model = np.ones(mesh.nC) * self.rho * Vratio
        self.model = model[sph_ind]

        # Create reduced identity map for Linear Pproblem
        idenMap = maps.IdentityMap(nP=int(sum(sph_ind)))

        # Create plane of observations
        xr = np.linspace(-20, 20, nx)
        yr = np.linspace(-20, 20, ny)
        X, Y = np.meshgrid(xr, yr)
        self.xr = xr
        self.yr = yr

        components = ["gx", "gy", "gz"]

        # Move obs plane 2 radius away from sphere
        Z = np.ones((xr.size, yr.size)) * 2.0 * self.rad
        self.locXyz = np.c_[utils.mkvc(X), utils.mkvc(Y), utils.mkvc(Z)]
        receivers = gravity.Point(self.locXyz, components=components)
        sources = gravity.SourceField([receivers])
        self.survey = gravity.Survey(sources)

        self.sim = gravity.Simulation3DIntegral(
            mesh,
            survey=self.survey,
            rhoMap=idenMap,
            actInd=sph_ind,
            store_sensitivities="disk",
        )
示例#18
0
    def setUp(self):

        np.random.seed(518936)

        # Create a cloud of  random points from a random gaussian mixture
        self.ndim = 2
        self.n_components = 2
        sigma = np.random.randn(self.n_components, self.ndim, self.ndim)
        sigma = np.c_[[sigma[i].dot(sigma[i].T) for i in range(sigma.shape[0])]]
        sigma[0] += np.eye(self.ndim)
        sigma[1] += np.eye(self.ndim) - 0.25 * np.eye(self.ndim).transpose((1, 0))
        self.sigma = sigma
        self.means = (
            np.abs(np.random.randn(self.ndim, self.ndim)) * np.c_[[100.0, -100.0]]
        )
        self.rv0 = multivariate_normal(self.means[0], self.sigma[0])
        self.rv1 = multivariate_normal(self.means[1], self.sigma[1])
        self.proportions = np.r_[0.6, 0.4]
        self.nsample = 1000
        self.s0 = self.rv0.rvs(int(self.nsample * self.proportions[0]))
        self.s1 = self.rv1.rvs(int(self.nsample * self.proportions[1]))
        self.samples = np.r_[self.s0, self.s1]
        self.model = mkvc(self.samples)
        self.mesh = discretize.TensorMesh(
            [np.maximum(1e-1, np.random.randn(self.nsample) ** 2.0)]
        )
        self.wires = Wires(("s0", self.mesh.nC), ("s1", self.mesh.nC))

        self.PlotIt = False
示例#19
0
    def getJtJdiag(self, m, W=None):
        """
        Return the diagonal of JtJ
        """
        self.model = m

        if W is None:
            W = np.ones(self.survey.nD)
        else:
            W = W.diagonal() ** 2
        if getattr(self, "_gtg_diagonal", None) is None:
            diag = np.zeros(self.G.shape[1])
            if not self.is_amplitude_data:
                for i in range(len(W)):
                    diag += W[i] * (self.G[i] * self.G[i])
            else:
                fieldDeriv = self.fieldDeriv
                Gx = self.G[::3]
                Gy = self.G[1::3]
                Gz = self.G[2::3]
                for i in range(len(W)):
                    row = (
                        fieldDeriv[0, i] * Gx[i]
                        + fieldDeriv[1, i] * Gy[i]
                        + fieldDeriv[2, i] * Gz[i]
                    )
                    diag += W[i] * (row * row)
            self._gtg_diagonal = diag
        else:
            diag = self._gtg_diagonal
        return mkvc((sdiag(np.sqrt(diag)) @ self.chiDeriv).power(2).sum(axis=0))
示例#20
0
    def test_simpleAlias(self):
        F = self.F
        nSrc = F.survey.nSrc
        nT = F.simulation.nT + 1
        b = np.random.rand(F.mesh.nF, nSrc, nT)
        F[:, "b", :] = b
        self.assertTrue(np.all(F[:, "e", 0] == F.mesh.edgeCurl.T * b[:, :, 0]))

        e = list(range(nT))
        for i in range(nT):
            e[i] = F.mesh.edgeCurl.T * b[:, :, i] + i
            e[i] = e[i][:, :, np.newaxis]
        e = np.concatenate(e, axis=2)
        self.assertTrue(np.all(F[:, "e", :] == e))
        self.assertTrue(np.all(F[self.Src0, "e", :] == e[:, 0, :]))
        self.assertTrue(np.all(F[self.Src1, "e", :] == e[:, 1, :]))
        for t in range(nT):
            self.assertTrue(
                np.all(F[self.Src1, "e", t] == utils.mkvc(e[:, 1, t], 2)))

        b = np.random.rand(F.mesh.nF, nT)
        F[self.Src0, "b", :] = b
        Cb = F.mesh.edgeCurl.T * b
        for i in range(Cb.shape[1]):
            Cb[:, i] += i
        self.assertTrue(np.all(F[self.Src0, "e", :] == Cb))

        def f():
            F[self.Src0, "e"] = F[self.Src0, "e"]

        self.assertRaises(KeyError, f)  # can't set a alias attr.
示例#21
0
def run(plotIt=True):

    M = discretize.TensorMesh([100, 100])
    h1 = utils.meshTensor([(6, 7, -1.5), (6, 10), (6, 7, 1.5)])
    h1 = h1 / h1.sum()
    M2 = discretize.TensorMesh([h1, h1])
    V = utils.model_builder.randomModel(M.vnC, seed=79, its=50)
    v = utils.mkvc(V)
    modh = maps.Mesh2Mesh([M, M2])
    modH = maps.Mesh2Mesh([M2, M])
    H = modH * v
    h = modh * H

    if not plotIt:
        return

    ax = plt.subplot(131)
    M.plotImage(v, ax=ax)
    ax.set_title("Fine Mesh (Original)")
    ax = plt.subplot(132)
    M2.plotImage(H, clim=[0, 1], ax=ax)
    ax.set_title("Course Mesh")
    ax = plt.subplot(133)
    M.plotImage(h, clim=[0, 1], ax=ax)
    ax.set_title("Fine Mesh (Interpolated)")
示例#22
0
    def test_deriv(self):
        s = utils.mkvc(utils.model_builder.randomModel(self.M.vnC)) + 1.0

        def fun(x):
            return self.problem.dpred(x), lambda x: self.problem.Jvec(s, x)

        return tests.checkDerivative(fun, s, num=4, plotIt=False, eps=FLR)
示例#23
0
    def getFields(self, bType="b", ifreq=0):
        src = self.srcList[ifreq]
        Pfx = self.mesh.getInterpolationMat(self.mesh.gridCC[self.activeCC, :],
                                            locType="Fx")
        Pfz = self.mesh.getInterpolationMat(self.mesh.gridCC[self.activeCC, :],
                                            locType="Fz")
        Ey = self.mesh.aveE2CC * self.f[src, "e"]
        Jy = utils.sdiag(self.sim.sigma) * Ey

        self.Ey = utils.mkvc(self.mirrorArray(Ey[self.activeCC],
                                              direction="y"))
        self.Jy = utils.mkvc(self.mirrorArray(Jy[self.activeCC],
                                              direction="y"))
        self.Bx = utils.mkvc(
            self.mirrorArray(Pfx * self.f[src, bType], direction="x"))
        self.Bz = utils.mkvc(
            self.mirrorArray(Pfz * self.f[src, bType], direction="z"))
示例#24
0
def get_Surface(mtrue, A):
    active = mtrue > (np.log(1e-8))
    nearpoint = findnearest(A)
    columns = mesh.gridCC[:, 0, None] == nearpoint
    ind = np.logical_and(columns.T, active).T
    idm = []
    surface = []
    for i in range(ind.shape[1]):
        idm.append(
            np.where(
                np.all(
                    mesh.gridCC == np.r_[nearpoint[i],
                                         np.max(mesh.gridCC[ind[:, i], 1])],
                    axis=1,
                )))
        surface.append(mesh.gridCC[idm[-1], 1])
    return utils.mkvc(np.r_[idm]), utils.mkvc(np.r_[surface])
示例#25
0
    def setUp(self):

        Inc = 45.0
        Dec = 45.0
        Btot = 51000
        H0 = (Btot, Inc, Dec)

        self.b0 = mag.analytics.IDTtoxyz(-Inc, Dec, Btot)

        cs = 25.0
        hxind = [(cs, 5, -1.3), (cs / 2.0, 41), (cs, 5, 1.3)]
        hyind = [(cs, 5, -1.3), (cs / 2.0, 41), (cs, 5, 1.3)]
        hzind = [(cs, 5, -1.3), (cs / 2.0, 40), (cs, 5, 1.3)]
        M = discretize.TensorMesh([hxind, hyind, hzind], "CCC")

        chibkg = 0.0
        self.chiblk = 0.01
        chi = np.ones(M.nC) * chibkg

        self.rad = 100
        self.sphere_center = [0.0, 0.0, 0.0]
        sph_ind = getIndicesSphere(self.sphere_center, self.rad, M.gridCC)
        chi[sph_ind] = self.chiblk

        xr = np.linspace(-300, 300, 41)
        yr = np.linspace(-300, 300, 41)
        X, Y = np.meshgrid(xr, yr)
        Z = np.ones((xr.size, yr.size)) * 150
        components = ["bx", "by", "bz"]
        self.xr = xr
        self.yr = yr
        self.rxLoc = np.c_[utils.mkvc(X), utils.mkvc(Y), utils.mkvc(Z)]
        receivers = mag.Point(self.rxLoc, components=components)
        srcField = mag.SourceField([receivers], parameters=H0)

        self.survey = mag.Survey(srcField)

        self.sim = mag.simulation.Simulation3DDifferential(
            M,
            survey=self.survey,
            muMap=maps.ChiMap(M),
            solver=Pardiso,
        )
        self.M = M
        self.chi = chi
示例#26
0
    def test_rotateMatrixFromNormals(self):
        np.random.seed(20)
        n0 = np.random.rand(3)
        n0 *= 1.0 / np.linalg.norm(n0)

        np.random.seed(25)
        n1 = np.random.rand(3)
        n1 *= 1.0 / np.linalg.norm(n1)

        np.random.seed(30)
        scale = np.random.rand(100, 1)
        XYZ0 = scale * n0
        XYZ1 = scale * n1

        XYZ2 = utils.coord_utils.rotatePointsFromNormals(XYZ0, n0, n1)
        self.assertTrue(
            np.linalg.norm(utils.mkvc(XYZ1) - utils.mkvc(XYZ2)) /
            np.linalg.norm(utils.mkvc(XYZ1)) < tol)
 def test_adjoint(self):
     # Adjoint Test
     # u = np.random.rand(self.mesh.nC*self.survey.nSrc)
     v = np.random.rand(self.mesh.nC)
     w = np.random.rand(mkvc(self.dobs).shape[0])
     wtJv = w.dot(self.p.Jvec(self.m0, v))
     vtJtw = v.dot(self.p.Jtvec(self.m0, w))
     passed = np.abs(wtJv - vtJtw) < 1e-10
     print("Adjoint Test", np.abs(wtJv - vtJtw), passed)
     self.assertTrue(passed)
示例#28
0
    def test_SetGet(self):
        F = self.F
        nSrc = F.survey.nSrc
        e = np.random.rand(F.mesh.nE,
                           nSrc) + np.random.rand(F.mesh.nE, nSrc) * 1j
        F[:, "e"] = e
        b = np.random.rand(F.mesh.nF,
                           nSrc) + np.random.rand(F.mesh.nF, nSrc) * 1j
        F[:, "b"] = b

        self.assertTrue(np.all(F[:, "e"] == e))
        self.assertTrue(np.all(F[:, "b"] == b))
        F[:] = {"b": b, "e": e}
        self.assertTrue(np.all(F[:, "e"] == e))
        self.assertTrue(np.all(F[:, "b"] == b))

        for s in zero_types:
            F[:, "b"] = s
            self.assertTrue(np.all(F[:, "b"] == b * 0))

        b = np.random.rand(F.mesh.nF, 1)
        print(type(self.Src0), "here")
        F[self.Src0, "b"] = b
        self.assertTrue(np.all(F[self.Src0, "b"] == b))

        b = np.random.rand(F.mesh.nF, 1)
        F[self.Src0, "b"] = b
        self.assertTrue(np.all(F[self.Src0, "b"] == b))

        phi = np.random.rand(F.mesh.nC, 2)
        F[[self.Src0, self.Src1], "phi"] = phi
        self.assertTrue(np.all(F[[self.Src0, self.Src1], "phi"] == phi))

        fdict = F[:, :]
        self.assertTrue(type(fdict) is dict)
        self.assertTrue(sorted([k for k in fdict]) == ["b", "e", "phi"])

        b = np.random.rand(F.mesh.nF, 2)
        F[[self.Src0, self.Src1], "b"] = b
        self.assertTrue(F[self.Src0]["b"].shape == (F.mesh.nF, 1))
        self.assertTrue(F[self.Src0, "b"].shape == (F.mesh.nF, 1))
        self.assertTrue(np.all(F[self.Src0, "b"] == utils.mkvc(b[:, 0], 2)))
        self.assertTrue(np.all(F[self.Src1, "b"] == utils.mkvc(b[:, 1], 2)))
示例#29
0
def GravityGradientSphereFreeSpace(x, y, z, R, xc, yc, zc, rho):
    """
        Computing the induced response of magnetic sphere in free-space.
        >> Input
        x, y, z:   Observation locations
        R:     radius of the sphere
        xc, yc, zc: Location of the sphere
        rho: Density of sphere

    """
    if ~np.size(x) == np.size(y) == np.size(z):
        print("Specify same size of x, y, z")
        return

    unit_conv = 1e12  # Unit conversion from SI to (Eotvos)
    x = mkvc(x)
    y = mkvc(y)
    z = mkvc(z)

    rx = x - xc
    ry = y - yc
    rz = z - zc
    rx2 = rx * rx
    ry2 = ry * ry
    rz2 = rz * rz

    r = np.sqrt(rx2 + ry2 + rz2)
    bot = r * r * r * r * r

    M = np.empty_like(x)  # create a vector of "Ms" if the point is outide
    M[r >= R] = R**3 * 4.0 / 3.0 * np.pi * rho  # outside points
    M[r < R] = r[r < R]**3 * 4.0 / 3.0 * np.pi * rho  # inside points

    g = G * (1.0 / bot) * M * unit_conv

    gxx = g * (2 * rx2 - ry2 - rz2)
    gyy = g * (2 * ry2 - rx2 - rz2)
    gzz = -gxx - gyy
    gxy = g * (3 * rx * ry)
    gxz = g * (3 * rx * rz)
    gyz = g * (3 * ry * rz)

    return gxx, gxy, gxz, gyy, gyz, gzz
示例#30
0
def hzAnalyticDipoleF(r, freq, sigma, secondary=True, mu=mu_0):
    """
    The analytical expression is given in Equation 4.56 in Ward and Hohmann,
    1988, and the example reproduces their Figure 4.2.


    .. plot::

        import numpy as np
        import matplotlib.pyplot as plt
        from SimPEG import electromagnetics as EM
        freq = np.logspace(-1, 5, 301)
        test = EM.analytics.hzAnalyticDipoleF(
                100, freq, 0.01, secondary=False)
        plt.loglog(freq, test.real, 'C0-', label='Real')
        plt.loglog(freq, -test.real, 'C0--')
        plt.loglog(freq, test.imag, 'C1-', label='Imaginary')
        plt.loglog(freq, -test.imag, 'C1--')
        plt.title('Response at $r=100$ m')
        plt.xlim([1e-1, 1e5])
        plt.ylim([1e-12, 1e-6])
        plt.xlabel('Frequency (Hz)')
        plt.ylabel('$H_z$ (A/m)')
        plt.legend(loc=6)
        plt.show()


    **Reference**

    - Ward, S. H., and G. W. Hohmann, 1988, Electromagnetic theory for
      geophysical applications, Chapter 4 of Electromagnetic Methods in Applied
      Geophysics: SEG, Investigations in Geophysics No. 3, 130--311; DOI:
      `10.1190/1.9781560802631.ch4
      <https://doi.org/10.1190/1.9781560802631.ch4>`_.

    """
    r = np.abs(r)
    k = np.sqrt(-1j * 2.0 * np.pi * freq * mu * sigma)

    m = 1
    front = m / (2.0 * np.pi * (k ** 2) * (r ** 5))
    back = 9 - (
        9 + 9j * k * r - 4 * (k ** 2) * (r ** 2) - 1j * (k ** 3) * (r ** 3)
    ) * np.exp(-1j * k * r)
    hz = front * back

    if secondary:
        hp = -1 / (4 * np.pi * r ** 3)
        hz = hz - hp

    if hz.ndim == 1:
        hz = utils.mkvc(hz, 2)

    return hz