def test_fitting_binomial(): print("\nTesting Binomial with n=100, p=0.3, loc=1:") dist = RVGs.Binomial(n=100, p=0.3, loc=1) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) # method of moment dict_mm_results = RVGs.Binomial.fit_mm(mean=np.mean(data), st_dev=np.std(data), fixed_location=1) # maximum likelihood dict_ml_results = RVGs.Binomial.fit_ml(data=data, fixed_location=1) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_binomial_fit(data=data, fit_results=dict_mm_results, title='Method of Moment') Plot.plot_binomial_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
def test_fitting_beta(): print("\nTesting Beta with a=2, b=3, loc=1, scale=2:") dist = RVGs.Beta(a=2, b=3, loc=1, scale=2) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) # method of moment dict_mm_results = RVGs.Beta.fit_mm(mean=np.mean(data), st_dev=np.std(data), minimum=1, maximum=3) # maximum likelihood dict_ml_results = RVGs.Beta.fit_ml(data=data, minimum=1, maximum=3) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_beta_fit(data=data, fit_results=dict_mm_results, title='Method of Moment') Plot.plot_beta_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
def test_fitting_johnson_sb(): print("\nTesting Johnson Sb with a=10, b=5, loc=10, scale=100") dist = RVGs.JohnsonSb(a=10, b=5, loc=10, scale=100) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) dict_ml_results = RVGs.JohnsonSb.fit_ml(data=data, fixed_location=10) print(" Fit:") print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_johnson_sb_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
def test_fitting_triangular(): print("\nTesting triangular with c=0.2, loc=6, scale=7") dist = RVGs.Triangular(c=0.2, loc=6, scale=7) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) dict_ml_results = RVGs.Triangular.fit_ml(data=data, fixed_location=6) print(" Fit:") print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_triangular_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
def test_fitting_negbinomial(): print("\nTesting NegBinomial with n=10, p=0.2, loc=1") dist = RVGs.NegativeBinomial(n=10, p=0.2, loc=1) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) dict_mm_results = RVGs.NegativeBinomial.fit_mm(mean=np.average(data), st_dev=np.std(data), fixed_location=1) dict_ml_results = RVGs.NegativeBinomial.fit_ml(data=data, fixed_location=1) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_negbinomial_fit(data=data, fit_results=dict_mm_results, title='Method of Moment')
def test_fitting_geometric(): print("\nTesting Geometric with p=0.3, loc=1") dist = RVGs.Geometric(p=0.3, loc=1) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) dict_mm_results = RVGs.Geometric.fit_mm(mean=np.average(data), fixed_location=1) dict_ml_results = RVGs.Geometric.fit_ml(data=data, fixed_location=1) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_geometric_fit(data=data, fit_results=dict_mm_results, title='Method of Moment') Plot.plot_geometric_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
def test_fitting_uniform_discrete(): print("\nTesting uniform discrete with l=10, u=18") dist = RVGs.UniformDiscrete(l=10, u=18) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) dict_mm_results = RVGs.UniformDiscrete.fit_mm(mean=np.average(data), st_dev=np.std(data)) dict_ml_results = RVGs.UniformDiscrete.fit_ml(data=data) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_uniform_discrete_fit(data=data, fit_results=dict_mm_results, title='Method of Moment') Plot.plot_uniform_discrete_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
def test_fitting_poisson(): print("\nTesting Poisson with mean=100 and loc = 10") dist = RVGs.Poisson(mu=100, loc=10) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) dict_mm_results = RVGs.Poisson.fit_mm(mean=np.average(data), fixed_location=10) dict_ml_results = RVGs.Poisson.fit_ml(data=data, fixed_location=10) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_poisson_fit(data=data, fit_results=dict_mm_results, title='Method of Moment') Plot.plot_poisson_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
def test_fitting_normal(): print("\nTesting Normal with loc=10, scale=2") dist = RVGs.Normal(loc=10, scale=2) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) dict_mm_results = RVGs.Normal.fit_mm(mean=np.average(data), st_dev=np.std(data)) dict_ml_results = RVGs.Normal.fit_ml(data=data) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_normal_fit(data=data, fit_results=dict_mm_results, title='Method of Moment') Plot.plot_normal_fit(data=data, fit_results=dict_mm_results, title='Maximum Likelihood')
def test_fitting_gamma_poisson(): print("\nTesting Gamma Poisson with a=2, gamma_scale=4, loc=2") dist = RVGs.GammaPoisson(a=2, gamma_scale=4, loc=2) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) dict_mm_results = RVGs.GammaPoisson.fit_mm(mean=np.average(data), st_dev=np.std(data), fixed_location=2) dict_ml_results = RVGs.GammaPoisson.fit_ml(data=data, fixed_location=2) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_gamma_poisson_fit(data=data, fit_results=dict_mm_results, title='Method of Moment') Plot.plot_gamma_poisson_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
def test_fitting_exponential(): print("\nTesting Exponential with scale=0.5, loc=2") dist = RVGs.Exponential(scale=0.5, loc=2) print(' percentile interval: ', dist.get_percentile_interval(alpha=0.05)) data = np.array(get_samples(dist, np.random)) # method of moment dict_mm_results = RVGs.Exponential.fit_mm(mean=np.average(data), fixed_location=2) # maximum likelihood dict_ml_results = RVGs.Exponential.fit_ml(data=data, fixed_location=2) print(" Fit:") print(" MM:", dict_mm_results) print(" ML:", dict_ml_results) # plot the fitted distributions Plot.plot_exponential_fit(data=data, fit_results=dict_mm_results, title='Method of Moment') Plot.plot_exponential_fit(data=data, fit_results=dict_ml_results, title='Maximum Likelihood')
# make a histogram Hist.plot_histogram(data=cols[0], title='Weekly Number of Drinks', bin_width=1) # mean and standard deviation stat = Stat.SummaryStat(name='Weekly number of drinks', data=cols[0]) print('Mean = ', stat.get_mean()) print('StDev = ', stat.get_stdev()) # fit a Poisson distribution fit_results = RVGs.Poisson.fit_ml(data=cols[0]) print('Fitting a Poisson distribution:', fit_results) # plot the fitted Poisson distribution Plot.plot_poisson_fit(data=cols[0], fit_results=fit_results, x_label='Weekly number of drinks', x_range=(0, 40), bin_width=1) # fit a gamma-Poisson distribution fit_results = RVGs.GammaPoisson.fit_ml(data=cols[0]) print('Fitting a gamma-Poisson distribution:', fit_results) # plot the fitted gamma-Poisson distribution Plot.plot_gamma_poisson_fit(data=cols[0], fit_results=fit_results, x_label='Weekly number of drinks', x_range=(0, 40), bin_width=1) # fit a beta-binomial distribution