示例#1
0
def plot_survival_curves_and_histograms(sim_outcomes_NO, sim_outcomes_ASP):

    # get survival curves of both treatments
    survival_curves = [
        sim_outcomes_NO.nLivingPatients, sim_outcomes_ASP.nLivingPatients
    ]

    # graph survival curve
    PathCls.graph_sample_paths(sample_paths=survival_curves,
                               title='Survival curve',
                               x_label='Simulation time step (year)',
                               y_label='Number of alive patients',
                               legends=['No Therapy', 'Aspirin Therapy'])

    # histograms of survival times
    set_of_survival_times = [
        sim_outcomes_NO.survivalTimes, sim_outcomes_ASP.survivalTimes
    ]

    # graph histograms
    Figs.graph_histograms(data_sets=set_of_survival_times,
                          title='Histogram of patient survival time',
                          x_label='Survival time (year)',
                          y_label='Counts',
                          bin_width=1,
                          legends=['No Therapy', 'Aspirin Therapy'],
                          transparency=0.6)
示例#2
0
def plot_survival_curves_and_histograms(sim_outcomes_mono, sim_outcomes_combo):
    """ draws the survival curves and the histograms of time until HIV deaths
    :param sim_outcomes_mono: outcomes of a cohort simulated under mono therapy
    :param sim_outcomes_combo: outcomes of a cohort simulated under combination therapy
    """

    # get survival curves of both treatments
    survival_curves = [
        sim_outcomes_mono.nLivingPatients, sim_outcomes_combo.nLivingPatients
    ]

    # graph survival curve
    PathCls.graph_sample_paths(sample_paths=survival_curves,
                               title='Survival curve',
                               x_label='Simulation time step (year)',
                               y_label='Number of alive patients',
                               legends=['Mono Therapy', 'Combination Therapy'])

    # histograms of survival times
    set_of_survival_times = [
        sim_outcomes_mono.survivalTimes, sim_outcomes_combo.survivalTimes
    ]

    # graph histograms
    Figs.graph_histograms(data_sets=set_of_survival_times,
                          title='Histogram of patient survival time',
                          x_label='Survival time (year)',
                          y_label='Counts',
                          bin_width=1,
                          legends=['Mono Therapy', 'Combination Therapy'],
                          transparency=0.6)
示例#3
0
def graph_sample_path(sample_path,
                      title=None, x_label=None, y_label=None,
                      figure_size=None, output_type='show',
                      legend=None, color_code=None):
    """
    plot a sample path
    :param sample_path: a sample path
    :param title: (string) title of the figure
    :param x_label: (string) x-axis label
    :param y_label: (string) y-axis label
    :param figure_size: (tuple) figure size
    :param output_type: select from 'show', 'pdf' or 'png'
    :param legend: string for the legend
    :param color_code: (string) 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black
    """

    if not isinstance(sample_path, _PrevalenceSamplePath):
        raise ValueError(
            'sample_path should be an instance of PrevalencePathRealTimeUpdate or PrevalencePathBatchUpdate.')

    fig, ax = plt.subplots(figsize=figure_size)
    ax.set_title(title)  # title
    ax.set_xlabel(x_label)  # x-axis label
    ax.set_ylabel(y_label)  # y-axis label

    # add a sample path to this ax
    add_sample_path_to_ax(sample_path=sample_path,
                          ax=ax,
                          color_code=color_code,
                          legend=legend)
    ax.set_ylim(bottom=0)  # the minimum has to be set after plotting the values
    # output figure
    Fig.output_figure(fig, output_type, title)
示例#4
0
def graph_sample_path(sample_path,
                      title,
                      x_label,
                      y_label,
                      output_type='show',
                      legend=None,
                      color_code=None):
    """
    produces a sample path
    :param sample_path: a sample path
    :param title: (string) title of the figure
    :param x_label: (string) x-axis label
    :param y_label: (string) y-axis label
    :param output_type: select from 'show', 'pdf' or 'png'
    :param legend: string for the legend
    :param color_code: (string) 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black
    """

    fig = plt.figure(title)
    plt.title(title)  # title
    plt.xlabel(x_label)  # x-axis label
    plt.ylabel(y_label)  # y-axis label

    # x and y values
    x_values = sample_path.get_times()
    y_values = sample_path.get_values()

    # color
    color_marker_text = '-'
    if not (color_code is None):
        color_marker_text = color_code + color_marker_text

    # plot
    plt.plot(x_values, y_values, color_marker_text)

    # add legend if provided
    if not (legend is None):
        plt.legend([legend])

    # set the minimum of y-axis to zero
    plt.ylim(bottom=0)  # the minimum has to be set after plotting the values

    # output figure
    Fig.output_figure(plt, output_type, title)
示例#5
0
def graph_sample_paths(sample_paths,
                       title=None, x_label=None, y_label=None,
                       figure_size=None, output_type='show',
                       legends=None, transparency=1, common_color_code=None):
    """ graphs multiple sample paths
    :param sample_paths: a list of sample paths
    :param title: (string) title of the figure
    :param x_label: (string) x-axis label
    :param y_label: (string) y-axis label
    :param figure_size: (tuple) figure size
    :param output_type: select from 'show', 'pdf' or 'png'
    :param legends: list of strings for legend
    :param transparency: float (0.0 transparent through 1.0 opaque)
    :param common_color_code: (string) color code if all sample paths should have the same color
        'b'	blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black
    """

    if len(sample_paths) == 1:
        raise ValueError('Only one sample path is provided. Use graph_sample_path instead.')

    fig, ax = plt.subplots(figsize=figure_size)
    ax.set_title(title)  # title
    ax.set_xlabel(x_label)  # x-axis label
    ax.set_ylabel(y_label)  # y-axis label

    # add all sample paths
    add_sample_paths_to_ax(sample_paths=sample_paths,
                           ax=ax,
                           common_color_code=common_color_code,
                           transparency=transparency)

    # add legend if provided
    if legends is not None:
        if common_color_code is None:
            ax.legend(legends)
        else:
            ax.legend([legends])

    # set the minimum of y-axis to zero
    ax.set_ylim(bottom=0)  # the minimum has to be set after plotting the values
    # output figure
    Fig.output_figure(fig, output_type, title)
def plot_survival_curves_and_histograms(multi_cohort_outcomes_mono, multi_cohort_outcomes_combo):
    """ plot the survival curves and the histograms of survival times
    :param multi_cohort_outcomes_mono: outcomes of a multi-cohort simulated under mono therapy
    :param multi_cohort_outcomes_combo: outcomes of a multi-cohort simulated under combination therapy
    """

    # get survival curves of both treatments
    sets_of_survival_curves = [
        multi_cohort_outcomes_mono.survivalCurves,
        multi_cohort_outcomes_combo.survivalCurves
    ]

    # graph survival curve
    PathCls.graph_sets_of_sample_paths(
        sets_of_sample_paths=sets_of_survival_curves,
        title='Survival Curves',
        x_label='Simulation Time Step (year)',
        y_label='Number of Patients Alive',
        legends=['Mono Therapy', 'Combination Therapy'],
        transparency=0.4,
        color_codes=['green', 'blue']
    )

    # histograms of survival times
    set_of_survival_times = [
        multi_cohort_outcomes_mono.meanSurvivalTimes,
        multi_cohort_outcomes_combo.meanSurvivalTimes
    ]

    # graph histograms
    Figs.graph_histograms(
        data_sets=set_of_survival_times,
        title='Histograms of Average Patient Survival Time',
        x_label='Survival Time (year)',
        y_label='Counts',
        bin_width=0.25,
        x_range=[5.25, 17.75],
        legends=['No Therapy', 'Aspirin Therapy'],
        color_codes=['green', 'blue'],
        transparency=0.5
    )
示例#7
0
def graph_sample_paths(sample_paths,
                       title,
                       x_label,
                       y_label,
                       output_type='show',
                       legends=None,
                       transparency=1,
                       common_color_code=None,
                       if_same_color=False):
    """ graphs multiple sample paths
    :param sample_paths: a list of sample paths
    :param title: (string) title of the figure
    :param x_label: (string) x-axis label
    :param y_label: (string) y-axis label
    :param output_type: select from 'show', 'pdf' or 'png'
    :param legends: list of strings for legend
    :param transparency: float (0.0 transparent through 1.0 opaque)
    :param common_color_code: (string) color code if all sample paths should have the same color
        'b'	blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black
    :param if_same_color: logical, default False, if set True, paint the sample paths the same color
    """

    if len(sample_paths) == 1:
        raise ValueError(
            'Only one sample path is provided. Use graph_sample_path instead.')

    if if_same_color and common_color_code is None:
        raise ValueError(
            "Provide a color code (e.g. 'k') for common_color_code if all sample paths should have the same color ."
        )

    fig = plt.figure(title)
    plt.title(title)  # title
    plt.xlabel(x_label)  # x-axis label
    plt.ylabel(y_label)  # y-axis label

    # color
    color_marker_text = '-'
    if not (common_color_code is None):
        color_marker_text = common_color_code + color_marker_text

        # x and y values
    if if_same_color:
        for path in sample_paths:
            x_values = path.get_times()
            y_values = path.get_values()
            # plot
            plt.plot(x_values, y_values, common_color_code, alpha=transparency)
    else:
        for path in sample_paths:
            x_values = path.get_times()
            y_values = path.get_values()
            # plot
            plt.plot(x_values, y_values, color_marker_text, alpha=transparency)

    # add legend if provided
    if not (legends is None):
        if common_color_code is None:
            plt.legend(legends)
        else:
            plt.legend([legends])

    # set the minimum of y-axis to zero
    plt.ylim(bottom=0)  # the minimum has to be set after plotting the values

    # output figure
    Fig.output_figure(plt, output_type, title)
示例#8
0
import CalibrationClasses as Cls
import CalibrationSettings as CalibSets
import SimPy.FigureSupport as Fig

# create a calibration object
calibration = Cls.Calibration()

# sample the posterior of the mortality probability
calibration.sample_posterior(n_samples=CalibSets.POST_N)

# create the histogram of the resampled mortality probabilities
Fig.graph_histogram(data=calibration.mortalityResamples,
                    title='Histogram of Resampled Mortality Probabilities',
                    x_label='Mortality Probability',
                    y_label='Counts',
                    x_range=[CalibSets.POST_L, CalibSets.POST_U])

# Estimate of mortality probability and the posterior interval
print(
    'Estimate of mortality probability ({:.{prec}%} credible interval):'.
    format(1 - CalibSets.ALPHA, prec=0),
    calibration.get_mortality_estimate_credible_interval(
        alpha=CalibSets.ALPHA))

# effective sample size
# txtEff = 'Effective sample size: {:.1f}'.format(calibration.get_effective_sample_size())
# print(txtEff)
示例#9
0
import SimPy.FigureSupport as Fig
import numpy as np
import matplotlib.pyplot as plt

data = [1, 2, 3, 4, 5]
print(Fig.get_moving_average(data=data, window=3))

data = np.random.randn(100)

fig = plt.figure(figsize=(4, 2))
ax = fig.add_subplot(111)
ax.plot(range(100), data, alpha=0.5)
ax.plot(range(100), Fig.get_moving_average(data, window=10), alpha=1)

plt.show()
示例#10
0
def print_histograms(sim_outcomes, diagnostic_name):
    # plot the sample path (survival curve)
    PathCls.graph_sample_path(sample_path=sim_outcomes.nLivingPatients,
                              title=f'Survival Curve {diagnostic_name}',
                              x_label='Time-Step (Week)',
                              y_label='Number Survived')

    # plot the histogram of survival times
    Figs.graph_histogram(
        data=sim_outcomes.survivalTimes,
        title=f'Histogram of Patient Survival Time {diagnostic_name}',
        x_label='Survival Time (Week)',
        y_label='Count',
        bin_width=1)

    # Figs.graph_histogram(
    #     data=sim_outcomes.timesINFECTEDtoHOSP_TBD,
    #     title=f'Histogram of INFECTED to HOSP_TBD {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesINFECTEDtoHOSP_TBM,
    #     title=f'Histogram of INFECTED to HOSP_TBM {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesINFECTEDtoDX_TBD,
    #     title=f'Histogram of INFECTED to DX_TBD {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesINFECTEDtoCLEARED,
    #     title=f'Histogram of INFECTED to CLEARED {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesCLEAREDtoDEAD,
    #     title=f'Histogram of CLEARED to DEAD {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesHOSP_TBDtoDEAD,
    #     title=f'Histogram of HOSP_TBD to DEAD {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesHOSP_TBDtoDX_TBD,
    #     title=f'Histogram of HOSP_TBD to DX_TBD {diagnostic_name}',
    #     x_label='Survival Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesHOSP_TBMtoDEAD,
    #     title=f'Histogram of HOSP_TBM to DEAD {diagnostic_name}',
    #     x_label='Survival Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesHOSP_TBMtoDX_TBM,
    #     title=f'Histogram of HOSP_TBM to DX_TBM {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesDX_TBDtoDEAD,
    #     title=f'Histogram of DX_TBD to DEAD {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesDX_TBDtoCLEARED,
    #     title=f'Histogram of DX_TBD to CLEARED {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesDX_TBMtoDEAD,
    #     title=f'Histogram of DX_TBM to DEAD {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesDX_TBMtoCLEARED,
    #     title=f'Histogram of DX_TBM to CLEARED {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesINFECTED,
    #     title=f'Histogram of INFECTED {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesHOSP_TBM,
    #     title=f'Histogram of HOSP_TBM {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesHOSP_TBD,
    #     title=f'Histogram of HOSP_TBD {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesDX_TBD,
    #     title=f'Histogram of DX_TBD {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesDX_TBM,
    #     title=f'Histogram of DX_TBM {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)
    #
    # Figs.graph_histogram(
    #     data=sim_outcomes.timesCLEARED,
    #     title=f'Histogram of CLEARED {diagnostic_name}',
    #     x_label='Time (Week)',
    #     y_label='Count',
    #     bin_width=1)

    # Figs.graph_histogram(
    #     data=sim_outcomes.costs,
    #     title=f'Histogram of Cost {diagnostic_name}',
    #     x_label='Cost (Dollars)',
    #     y_label='Count',
    #     bin_width=1)

    Figs.graph_histogram(
        data=sim_outcomes.costsPresenting,
        title=f'Histogram of Cost (Patients Presenting) {diagnostic_name}',
        x_label='Cost (Dollars)',
        y_label='Count',
        bin_width=1)
示例#11
0
                      parameters=P.ParametersFixed(therapy=therapy_none))

# simulate the cohort over the specified time steps
myCohort_0.simulate(sim_length=D.SIM_LENGTH)

# plot the sample path (survival curve)
Path.graph_sample_path(
    sample_path=myCohort_0.cohortOutcomes.nLivingPatients,
    title='Survival Curvel for No Therapy',
    x_label='Time-Step (Year)',
    y_label='Number Survived')

# plot the histogram of survival times
Fig.graph_histogram(
    data=myCohort_0.cohortOutcomes.survivalTimes,
    title='Histogram of Patient Survival Times for No Therapy',
    x_label='Survival Time (Year)',
    y_label='Count',
    bin_width=1)

# print the outcomes of this simulated cohort
Support.print_outcomes(sim_outcomes=myCohort_0.cohortOutcomes,therapy_name=therapy_none)


therapy_asp = P.Therapies.ASP

# create a cohort
myCohort_1 = Cls.Cohort(id=1,
                      pop_size=D.POP_SIZE,
                      parameters=P.ParametersFixed(therapy=therapy_asp))

# simulate the cohort over the specified time steps
    pop_size=D.POP_SIZE,
    parameters=P.ParametersFixed(diagnostic=P.Diagnostic.SOC))

multiCohort.simulate(sim_length=D.SIM_LENGTH)

# plot the sample paths
Path.graph_sample_paths(
    sample_paths=multiCohort.multiCohortOutcomes.survivalCurves,
    title='Survival Curves',
    x_label='Time-Step (Week)',
    y_label='Number Survived',
    transparency=0.5)

# plot the histogram of average survival time
Fig.graph_histogram(data=multiCohort.multiCohortOutcomes.meanSurvivalTimes,
                    title='Histogram of Mean Survival Time',
                    x_label='Mean Survival Time (Week)',
                    y_label='Count')

# print the outcomes of this simulated cohort
Support.print_outcomes(multi_cohort_outcomes=multiCohort.multiCohortOutcomes,
                       diagnostic=P.Diagnostic.SOC)

# create multiple cohort
multiCohort_NSB = Cls.MultiCohort(
    ids=range(D.N_COHORTS, 2 * D.N_COHORTS),
    pop_size=D.POP_SIZE,
    parameters=P.ParametersFixed(diagnostic=P.Diagnostic.NSB))

multiCohort_NSB.simulate(sim_length=D.SIM_LENGTH)

# plot the sample paths
示例#13
0
                                 pop_size=D.POP_SIZE,
                                 therapy=therapy_no)

multiCohort_no.simulate(sim_length=D.SIM_LENGTH)

# plot the sample paths
Path.graph_sample_paths(
    sample_paths=multiCohort_no.multiCohortOutcomes.survivalCurves,
    title='Survival Curves',
    x_label='Time-Step (Year)',
    y_label='Number Survived',
    transparency=0.5)

# plot the histogram of average survival time
Fig.graph_histogram(data=multiCohort_no.multiCohortOutcomes.meanSurvivalTimes,
                    title='Histogram of Mean Survival Time',
                    x_label='Mean Survival Time (Year)',
                    y_label='Count')

# print the outcomes of this simulated cohort
Support.print_outcomes(
    multi_cohort_outcomes=multiCohort_no.multiCohortOutcomes,
    therapy_name=therapy_no)

# ASPIRIN THERAPY
N_COHORTS = 20  # number of cohorts
therapy_asp = P.Therapies.ASP  # selected therapy

# create multiple cohort
multiCohort_asp = Cls.MultiCohort(ids=range(N_COHORTS),
                                  pop_size=D.POP_SIZE,
                                  therapy=therapy_asp)
示例#14
0
import numpy as np
import SimPy.FigureSupport as cls

obs = np.random.normal(4, 3, 1000)

cls.graph_histogram(
    data=obs,
    title='Histogram',
    x_label='Values',
    y_label='Counts',
    color='g',
    bin_width=1,
    x_range=[-5, 20],
    y_range=[0, 140],
    legend='Number of patients')

obs_sets = [
    np.random.normal(4, 3, 1000),
    np.random.normal(8, 3, 1000)
]

cls.graph_histograms(
    data_sets=obs_sets,
    title='Two histograms',
    x_label='Values',
    y_label='Counts',
    legends=['H 1', 'H 2'],
    bin_width=1,
    x_range=[-10, 20],
    #y_range=[0, 100],
    color_codes=['blue', 'green'],
示例#15
0
import numpy as np
import SimPy.FigureSupport as cls

obs = np.random.normal(4, 3, 1000)
cls.graph_histogram(
    data=obs,
    title='Histogram',
    x_label='Values',
    y_label='Counts',
    x_range=[-5, 20],
    y_range=[0, 140],
    legend='Number of patients')

obs_sets = [
    np.random.normal(4, 3, 1000),
    np.random.normal(8, 3, 1000)
]

cls.graph_histograms(
    data_sets=obs_sets,
    title='Two histograms',
    x_label='Values',
    y_label='Counts',
    legend=['H 1', 'H 2'],
    bin_width=0.5,
    x_range=[-10, 20],
    y_range=[0, 100],
    transparency=0.6
)