示例#1
0
    def export_to_csv(self, file_name='PartialRank.csv', decimal=3):

        formatedResults = [['Parameter', 'Coefficient', 'P-Value']]
        for row in self.results:
            name = row[0]
            coef = F.format_number(number=row[1], deci=decimal)
            p = F.format_number(number=row[2], deci=decimal)
            formatedResults.append([name, coef, p])

        IO.write_csv(file_name=file_name, rows=formatedResults)
def print_results(stat):
    print('   Average =', Support.format_number(stat.get_mean(), deci=3))
    print('   St Dev =', Support.format_number(stat.get_stdev(), deci=3))
    print('   Min =', Support.format_number(stat.get_min(), deci=3))
    print('   Max =', Support.format_number(stat.get_max(), deci=3))
    print('   Median =', Support.format_number(stat.get_percentile(50), deci=3))
    print('   95% Mean Confidence Interval (t-based) =',
          Support.format_interval(stat.get_t_CI(0.05), 3))
    print('   95% Mean Confidence Interval (bootstrap) =',
          Support.format_interval(stat.get_bootstrap_CI(0.05, 1000), 3))
    print('   95% Percentile Interval =',
          Support.format_interval(stat.get_PI(0.05), 3))
示例#3
0
 def get_summary(self, alpha, digits):
     """
     :param alpha: significance level
     :param digits: digits to round the numbers to
     :return: a list ['name', 'mean', 'confidence interval', 'percentile interval', 'st dev', 'min', 'max']
     """
     return [self.name,
             F.format_number(self.get_mean(), digits),
             F.format_interval(self.get_t_CI(alpha), digits),
             F.format_interval(self.get_PI(alpha), digits),
             F.format_number(self.get_stdev(), digits),
             F.format_number(self.get_min(), digits),
             F.format_number(self.get_max(), digits)]
示例#4
0
    def export_to_csv(self, corrs='r', file_name='Correlations.csv', decimal=3, delimiter=','):
        """
        formats the correlation coefficients and p-value to the specified decimal point and exports to a csv file
        :param corrs: (string) or (list of strings) from
                     'r' for Pearson's,
                     'rho' for Spearman's rank correlation,
                     'p' for partial correlation, and
                     'pr' for partial rank correlation
        :param file_name: file name
        :param decimal: decimal points to round the estimates to
        :param delimiter: to separate by comma, use ',' and by tab, use '\t'
        """

        if not isinstance(corrs, list):
            corrs = [corrs]

        # make the header
        tile_row = ['Parameter']
        for corr in corrs:
            tile_row.append(self._full_name(corr=corr))
            tile_row.append('P-value')

        # add the header
        formatted_results = [tile_row]

        # add the names of parameters (first column)
        for name in self.dicParameterValues:
            formatted_results.append([name])

        # calculate all forms of correlation requested
        for corr in corrs:
            results, text = self._get_results_text(corr=corr)

            i = 1
            for par, values in results.items():
                coef = F.format_number(number=values[0], deci=decimal)
                p = F.format_number(number=values[1], deci=decimal)
                formatted_results[i].extend([coef, p])
                i += 1

        IO.write_csv(file_name=file_name, rows=formatted_results, delimiter=delimiter)
def print_switch_icu_info(scenarios, scenario_df):

    names = [s.name for s in scenarios.CEA.strategies]
    print('Utilization')
    for name in names:
        mean_interval = scenario_df.get_mean_interval(
            scenario_name=name,
            outcome_name='Utilization (unit of time): Social Distancing')
        print('  ', name, ':', F.format_number(mean_interval[0], deci=1))

    print('# of switches')
    for name in names:
        mean_interval = scenario_df.get_mean_interval(
            scenario_name=name, outcome_name='Number of Switches')
        print('  ', name, ':', F.format_number(mean_interval[0], deci=1))

    print('% served in ICU')
    for name in names:
        mean_interval = scenario_df.get_mean_interval(
            scenario_name=name, outcome_name='Average ratio: % served in ICU')
        print('  ', name, ':',
              F.format_number(mean_interval[0], deci=1, format='%'))
示例#6
0
def format_x_axis(ax, min_x, max_x, delta_x, buffer=0, form=None, deci=None):

    # get x ticks
    xs = ax.get_xticks()

    if min_x is None:
        min_x = xs[0]
    if max_x is None:
        max_x = xs[-1]
    if delta_x is not None:
        xs = calculate_ticks(min_x, max_x, delta_x)

    # format x-axis
    ax.set_xticks(xs)
    if deci is not None:
        ax.set_xticklabels(
            [F.format_number(x, deci=deci, format=form) for x in xs])

    ax.set_xlim([min_x - buffer, max_x + buffer])
示例#7
0
import SimPy.FormatFunctions as Format

print("\nFormatting estimates:")
print(Format.format_number(12345.678,deci=1))
print(Format.format_number(12345.678, deci=1, format=Format.FormatNumber.NUMBER))
print(Format.format_number(12345.678, deci=1, format=Format.FormatNumber.CURRENCY))
print(Format.format_number(0.12345, deci=1, format=Format.FormatNumber.PERCENTAGE))

print("\nFormatting intervals:")
print(Format.format_interval([12345.678, 98765.432],deci=1))
print(Format.format_interval([12345.678, 98765.432], deci=1, format=Format.FormatNumber.NUMBER))
print(Format.format_interval([12345.678, 98765.432], deci=1, format=Format.FormatNumber.CURRENCY))
print(Format.format_interval([0.12345, 0.98765], deci=1, format=Format.FormatNumber.PERCENTAGE))

print("\nFormatting estimates and intervals:")
print(Format.format_estimate_interval(
    estimate=5555.55, interval=[12345.678, 98765.432],deci=1))
print(Format.format_estimate_interval(
    estimate=5555.55, interval=[12345.678, 98765.432], deci=1, format=Format.FormatNumber.NUMBER))
print(Format.format_estimate_interval(
    estimate=5555.55, interval=[12345.678, 98765.432], deci=1, format=Format.FormatNumber.CURRENCY))
print(Format.format_estimate_interval(
    estimate=0.5555, interval=[0.12345, 0.98765], deci=1, format=Format.FormatNumber.PERCENTAGE))
    def calculate_means_and_intervals(self,
                                      poster_file='ParameterEstimates.csv',
                                      significance_level=0.05,
                                      deci=3,
                                      ids=None,
                                      csv_file_name_prior=None):
        """ calculate the mean and credible intervals of parameters specified by ids
        :param poster_file: csv file where the posterior ranges should be stored
        :param significance_level:
        :param deci:
        :param ids:
        :param csv_file_name_prior: (string) filename where parameter prior ranges are located
        :return:
        """

        # read prior distributions
        priors = None
        if csv_file_name_prior is not None:
            priors = IO.read_csv_rows(file_name=csv_file_name_prior,
                                      if_ignore_first_row=True,
                                      delimiter=',',
                                      if_convert_float=True)

        results = []  # list of parameter estimates and credible intervals

        par_id = 0
        for key, value in self.dictOfParams.items():

            # skip these columns
            if key in ['Simulation Replication', 'Random Seed']:
                continue

            # if estimates and credible intervals should be calculated for this parameter
            if_record = False
            if ids is None:
                if_record = True
            elif par_id in ids:
                if_record = True

            # record the calculated estimate and credible interval
            if if_record:

                if priors is None:
                    decimal = deci
                    form = ''
                    multip = 1
                else:
                    decimal = priors[par_id][Column.DECI.value]
                    decimal = 0 if decimal is None else decimal
                    form = priors[par_id][Column.FORMAT.value]
                    multip = priors[par_id][Column.MULTIPLIER.value]

                if multip is None:
                    data = value
                else:
                    multip = float(multip)
                    data = [multip * x for x in value]

                sum_stat = Stat.SummaryStat(name=key, data=data)
                mean_text = Format.format_number(number=sum_stat.get_mean(),
                                                 deci=decimal,
                                                 format=form)
                PI_text = Format.format_interval(
                    interval=sum_stat.get_PI(significance_level),
                    deci=decimal,
                    format=form)

                results.append([par_id, key, mean_text, PI_text])

            # next parameter
            par_id += 1

        # write parameter estimates and credible intervals
        IO.write_csv(rows=results, file_name=poster_file)