示例#1
0
def normCrossCorrelation(img1, img2, pt0, pt1, status, winsize, method=cv2.cv.CV_TM_CCOEFF_NORMED):
    """
    **SUMMARY**
    (Dev Zone)
    Calculates normalized cross correlation for every point.
    
    **PARAMETERS**
    
    img1 - Image 1.
    img2 - Image 2.
    pt0 - vector of points of img1
    pt1 - vector of points of img2
    status - Switch which point pairs should be calculated.
             if status[i] == 1 => match[i] is calculated.
             else match[i] = 0.0
    winsize- Size of quadratic area around the point
             which is compared.
    method - Specifies the way how image regions are compared. see cv2.matchTemplate
    
    **RETURNS**
    
    match - Output: Array will contain ncc values.
            0.0 if not calculated.
 
    """
    nPts = len(pt0)
    match = np.zeros(nPts)
    for i in np.argwhere(status):
        i = i[0]
        patch1 = cv2.getRectSubPix(img1,(winsize,winsize),tuple(pt0[i]))
        patch2 = cv2.getRectSubPix(img2,(winsize,winsize),tuple(pt1[i]))
        match[i] = cv2.matchTemplate(patch1,patch2,method)
    return match
示例#2
0
    def _initData(self):
        """
        Initialize the cluster centers and initial values of the pixel-wise
        cluster assignment and distance values.
        """
        self.clusters = -1 * np.ones(self.img.shape[:2])
        self.distances = self.FLT_MAX * np.ones(self.img.shape[:2])

        centers = []
        for i in xrange(self.step, self.width - self.step/2, self.step):
            for j in xrange(self.step, self.height - self.step/2, self.step):
                nc = self._findLocalMinimum(center=(i, j))
                color = self.labimg[nc[1], nc[0]]
                center = [color[0], color[1], color[2], nc[0], nc[1]]
                centers.append(center)
        self.center_counts = np.zeros(len(centers))
        self.centers = np.array(centers)
示例#3
0
def normCrossCorrelation(img1,
                         img2,
                         pt0,
                         pt1,
                         status,
                         winsize,
                         method=cv2.cv.CV_TM_CCOEFF_NORMED):
    """
    **SUMMARY**
    (Dev Zone)
    Calculates normalized cross correlation for every point.
    
    **PARAMETERS**
    
    img1 - Image 1.
    img2 - Image 2.
    pt0 - vector of points of img1
    pt1 - vector of points of img2
    status - Switch which point pairs should be calculated.
             if status[i] == 1 => match[i] is calculated.
             else match[i] = 0.0
    winsize- Size of quadratic area around the point
             which is compared.
    method - Specifies the way how image regions are compared. see cv2.matchTemplate
    
    **RETURNS**
    
    match - Output: Array will contain ncc values.
            0.0 if not calculated.
 
    """
    nPts = len(pt0)
    match = np.zeros(nPts)
    for i in np.argwhere(status):
        i = i[0]
        patch1 = cv2.getRectSubPix(img1, (winsize, winsize), tuple(pt0[i]))
        patch2 = cv2.getRectSubPix(img2, (winsize, winsize), tuple(pt1[i]))
        match[i] = cv2.matchTemplate(patch1, patch2, method)
    return match
示例#4
0
    def createLowpassFilter(self, xCutoff, yCutoff=None, size=(64, 64)):
        """
        **SUMMARY**

        Creates a lowpass filter of given size and order.

        **PARAMETERS**

        * *xCutoff*       - int - horizontal cut off frequency
                          - list - provide a list of three cut off frequencies
                                   to create a 3 channel filter
        * *yCutoff*       - int - vertical cut off frequency
                          - list - provide a list of three cut off frequencies
                                   to create a 3 channel filter
        * *size*      - size of the filter (width, height)

        **RETURNS**

        DFT filter.

        **EXAMPLE**

        >>> flt = DFT.createLowpassFilter(xCutoff=75, size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=[75], size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=[75, 100, 120],
                                          size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=75, yCutoff=35,
                                          size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=[75], yCutoff=[35],
                                          size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=[75, 100, 125], yCutoff=35,
                                          size=(320, 280))
        >>> # yCutoff will be [35, 35, 35]

        >>> flt = DFT.createLowpassFilter(xCutoff=[75, 113, 124],
                                          yCutoff=[35, 45, 90],
                                          size=(320, 280))

        >>> img = Image('lenna')
        >>> flt.applyFilter(img).show()
        """
        if isinstance(xCutoff, list):
            if len(xCutoff) != 3 and len(xCutoff) != 1:
                warnings.warn("xCutoff list must be of size 3 or 1")
                return None
            if isinstance(yCutoff, list):
                if len(yCutoff) != 3 and len(yCutoff) != 1:
                    warnings.warn("yCutoff list must be of size 3 or 1")
                    return None
                if len(yCutoff) == 1:
                    yCutoff = [yCutoff[0]] * len(xCutoff)
            else:
                yCutoff = [yCutoff] * len(xCutoff)
            stackedfilter = DFT()
            for xfreq, yfreq in zip(xCutoff, yCutoff):
                stackedfilter = stackedfilter._stackFilters(
                    self.createLowpassFilter(xfreq, yfreq, size))
            image = Image(stackedfilter._numpy)
            retVal = DFT(numpyarray=stackedfilter._numpy,
                         image=image,
                         xCutoffLow=xCutoff,
                         yCutoffLow=yCutoff,
                         channels=len(xCutoff),
                         size=size,
                         type=stackedfilter._type,
                         order=self._order,
                         frequency=stackedfilter._freqpass)
            return retVal

        w, h = size
        xCutoff = np.clip(int(xCutoff), 0, w / 2)
        if yCutoff is None:
            yCutoff = xCutoff
        yCutoff = np.clip(int(yCutoff), 0, h / 2)
        flt = np.zeros((w, h))
        flt[0:xCutoff, 0:yCutoff] = 255
        flt[0:xCutoff, h - yCutoff:h] = 255
        flt[w - xCutoff:w, 0:yCutoff] = 255
        flt[w - xCutoff:w, h - yCutoff:h] = 255
        img = Image(flt)
        lowpassFilter = DFT(size=size,
                            numpyarray=flt,
                            image=img,
                            type="Lowpass",
                            xCutoffLow=xCutoff,
                            yCutoffLow=yCutoff,
                            frequency="lowpass")
        return lowpassFilter
示例#5
0
    def createLowpassFilter(self, xCutoff, yCutoff=None, size=(64, 64)):
        """
        **SUMMARY**

        Creates a lowpass filter of given size and order.

        **PARAMETERS**

        * *xCutoff*       - int - horizontal cut off frequency
                          - list - provide a list of three cut off frequencies
                                   to create a 3 channel filter
        * *yCutoff*       - int - vertical cut off frequency
                          - list - provide a list of three cut off frequencies
                                   to create a 3 channel filter
        * *size*      - size of the filter (width, height)

        **RETURNS**

        DFT filter.

        **EXAMPLE**

        >>> flt = DFT.createLowpassFilter(xCutoff=75, size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=[75], size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=[75, 100, 120],
                                          size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=75, yCutoff=35,
                                          size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=[75], yCutoff=[35],
                                          size=(320, 280))

        >>> flt = DFT.createLowpassFilter(xCutoff=[75, 100, 125], yCutoff=35,
                                          size=(320, 280))
        >>> # yCutoff will be [35, 35, 35]

        >>> flt = DFT.createLowpassFilter(xCutoff=[75, 113, 124],
                                          yCutoff=[35, 45, 90],
                                          size=(320, 280))
        
        >>> img = Image('lenna')
        >>> flt.applyFilter(img).show()
        """
        if isinstance(xCutoff, list):
            if len(xCutoff) != 3 and len(xCutoff) != 1:
                warnings.warn("xCutoff list must be of size 3 or 1")
                return None
            if isinstance(yCutoff, list):
                if len(yCutoff) != 3 and len(yCutoff) != 1:
                    warnings.warn("yCutoff list must be of size 3 or 1")
                    return None
                if len(yCutoff) == 1:
                    yCutoff = [yCutoff[0]]*len(xCutoff)
            else:
                yCutoff = [yCutoff]*len(xCutoff)
            stackedfilter = DFT()
            for xfreq, yfreq in zip(xCutoff, yCutoff):
                stackedfilter = stackedfilter._stackFilters(self.createLowpassFilter(xfreq, yfreq, size))
            image = Image(stackedfilter._numpy)
            retVal = DFT(numpyarray=stackedfilter._numpy, image=image,
                         xCutoffLow=xCutoff, yCutoffLow=yCutoff,
                         channels=len(xCutoff), size=size,
                         type=stackedfilter._type, order=self._order,
                         frequency=stackedfilter._freqpass)
            return retVal

        w, h = size
        xCutoff = np.clip(int(xCutoff), 0, w/2)
        if yCutoff is None:
            yCutoff = xCutoff
        yCutoff = np.clip(int(yCutoff), 0, h/2)
        flt = np.zeros((w, h))
        flt[0:xCutoff, 0:yCutoff] = 255
        flt[0:xCutoff, h-yCutoff:h] = 255
        flt[w-xCutoff:w, 0:yCutoff] = 255
        flt[w-xCutoff:w, h-yCutoff:h] = 255
        img = Image(flt)
        lowpassFilter = DFT(size=size, numpyarray=flt, image=img,
                            type="Lowpass", xCutoffLow=xCutoff,
                            yCutoffLow=yCutoff, frequency="lowpass")
        return lowpassFilter