def record_audio(record_seconds, savepath=path_record, del_file=False): """接受语音""" present_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())) file_name = present_time + '.wav' # 文件名 ap = AudioProcessing() ap.record(record_seconds=record_seconds, output_path=savepath + file_name) m = ap.MFCC() m.init_audio(path=savepath + '20.wav') mfcc_data = m.mfcc(nfft=1024, cal_energy=True, d1=True, d2=True) vad = ap.VAD() vad.init_mfcc(mfcc_data) mfcc_vad_data = vad.mfcc() if del_file: os.remove(savepath + '%s.wav' % file_name) return mfcc_vad_data
class AcousticModel(DataInitialization): """声学模型""" def __init__(self, log, unit_type, processes=None, job_id=0, console=True, state_num=5, mix_level=1, dct_num=13, delta_1=True, delta_2=True): """ 初始化 :param log: 记录日志 :param unit_type: 基元类型 :param processes: 进程数 :param job_id: 作业id :param console: 控制台是否显示基元训练信息 :param state_num: 每个基元的状态数,一般为5个及以上 :param mix_level: 高斯混合度 :param dct_num: 标准MFCC维数(如13) :param delta_1: True——计算一阶差分系数,MFCC维度 + vector_size(如13 + 13 = 26) :param delta_2: True——计算二阶差分系数,MFCC维度 + vector_size(如13 + 13 + 13 = 39) """ super().__init__() '''作业id''' self.__job_id = job_id self.__console = console '''保存日志''' self.log = log '''存储所有基元{基元:音频数据文件数目,...}''' self.__loaded_units = [] '''复合HMM模型''' self.__unit = {} '''基元类型''' self.__unit_type = unit_type '''基元状态数''' self.__state_num = state_num '''基元参数保存路径''' self.__address = PARAMETERS_FILE_PATH '''高斯混合度''' self.__mix_level = mix_level '''音频处理''' self.__audio = AudioProcessing() '''音频特征向量参数''' self.__dct_num = dct_num self.__delta_1 = delta_1 self.__delta_2 = delta_2 '''特征向量总维度''' self.__vector_size = self.__dct_num if self.__delta_2 is True: self.__vector_size *= 3 elif self.__delta_1 is True: self.__vector_size *= 2 '''获取cpu核心数''' cpu_count = os.cpu_count() '''进程池''' if processes is None: self.processes = cpu_count self.log.note('训练进程数:%s' % cpu_count, cls='i') elif processes < 1 or type(processes) is not int: raise CpuCountError elif processes > cpu_count: self.processes = processes self.log.note('训练进程数:%s (>cpu核心数%s,可能影响训练性能)' % (int(processes), cpu_count), cls='w') else: self.processes = processes self.log.note('训练进程数:%s' % processes, cls='i') @property def unit(self): return self.__unit @property def loaded_units(self): return self.__loaded_units @property def statenum(self): return self.__state_num """解决pickle序列化问题""" def __getstate__(self): state = self.__dict__.copy() state['unit_type'] = state['log'].unit_type state['console'] = state['log'].console del state['log'] # log instance is unpickable return state def __setstate__(self, state): self.__dict__.update(state) self.__dict__['log'] = Log(state['unit_type'], console=state['console']) self.__dict__['log'].append() del state['unit_type'] del state['console'] """""" """""" """""" """""" def load_unit(self, unit_type=None): """ 加载基元文件 :param unit_type: 根据基元类型的文件批量初始化基元 如 路径..AcousticModel/Unit/下有XIF_tone.csv文件,里面含有所有预设基元 :return: """ if unit_type: self.__unit_type = unit_type unit_type_path = UNIT_FILE_PATH + '/' + self.__unit_type if not os.path.exists(unit_type_path): raise UnitFileExistsError(self.__unit_type, self.log) else: '''判断文件夹是否存在,不存在则创建''' if not os.path.exists(PARAMETERS_FILE_PATH): os.mkdir(PARAMETERS_FILE_PATH) if not os.path.exists(PARAMETERS_FILE_PATH + '/' + self.__unit_type): os.mkdir(PARAMETERS_FILE_PATH + '/' + self.__unit_type) with open(unit_type_path) as f: u = f.readline().strip('\n') self.log.note('使用基元: %s' % u, cls='i') self.log.note('加载基元中...', cls='i') while u: u = f.readline() if len(u) == 0: break u = u.strip('\n').split(',') for i in range(len(u)): self.__loaded_units.append(u[i]) self.log.note('基元加载完成 √', cls='i') # 基元载入完成 def init_unit(self, unit=None, new_log=True): """ 初始化基元,生成基元的复合数据结构 :param unit: 初始化指定基元,为None时初始化所有loaded_units里的基元 :param new_log: 是否删除先前日志 :return: """ def generate(_unit): """""" '''状态集合''' states = {_: _unit for _ in range(self.__state_num)} '''观测概率表示(GMM)''' observations = ['GMM_probability'] '''状态转移矩阵''' A = np.zeros((self.__state_num, self.__state_num)) '''开始状态,为虚状态,只允许向下一个状态转移''' A[0][1] = 1. for j in range(1, self.__state_num - 1): for k in range(j, j + 2): A[j][k] = 0.5 '''创建基元文件夹''' unit_path = PARAMETERS_FILE_PATH + '/%s/%s' % (self.__unit_type, _unit) if not os.path.exists(unit_path): os.mkdir(unit_path) '''''' '''''' '''''' log = Log(self.__unit_type, _unit, console=self.__console) if new_log: log.generate() else: log.append() '''初始化GMM''' gmm = [ Clustering.GMM(self.__vector_size, self.__mix_level, log) for _ in range(self.__state_num - 2) ] '''初始化虚状态评分类''' virtual_gmm_1 = AcousticModel.VirtualState(0.) virtual_gmm_2 = AcousticModel.VirtualState(0.) gmm.insert(0, virtual_gmm_1) gmm.append(virtual_gmm_2) '''生成hmm实例''' lhmm = LHMM(states, observations, log, T=None, A=A, profunc=gmm, pi=None) '''数据结构:{基元:HMM,...}''' self.__unit[_unit] = lhmm """""" """""" """""" """""" """""" """""" """""" if unit: generate(unit) return else: for unit in self.__loaded_units: generate(unit) def init_parameter(self, unit=None, *args): """ 加载参数 :param unit: 基元unit为None时,加载所有基元参数 :param args: 为从本地读取参数传递的参数文件位置信息或数据库配置信息 args为(None,)时从默认地址读取参数,为(path,)时从path 读取参宿;args为(数据库参数信息)时从数据库读取 数据库参数信息: 1、数据库类型(mysql/sqlserver/..) 2、dict{host, usr, passwd, database} 3、表(Table)名 :return: """ def load(_unit): address = self.__address + '/' + self.__unit_type unit_path = address + '/%s' % _unit detail_file = open(unit_path + '/detail.csv') A = np.load(unit_path + '/A.npy') pi = np.load(unit_path + '/pi.npy') hmm = self.__unit[_unit] hmm.change_A(A) hmm.change_pi(pi) for index_ in range(1, self.__state_num - 1): '''读取均值、协方差、权重矩阵''' means = np.load(unit_path + '/GMM_%d_means.npy' % index_) covariance = np.load(unit_path + '/GMM_%d_covariance.npy' % index_) alpha = np.load(unit_path + '/GMM_%d_weight.npy' % index_) mix_level = int(detail_file.readline().split()[-1]) # 获取高斯混合度 '''将数据初始化到GMM''' gmm = hmm.profunction[index_] gmm.mean = means gmm.covariance = covariance gmm.alpha = alpha gmm.mixture = mix_level detail_file.close() if unit: load(unit) return if len(args) == 0: units = self.__loaded_units '''读取参数''' for index in range(len(units)): load(units[index]) elif len(args) == 3: '''从数据库读取参数,参数包括: 数据库类型(mysql/sqlserver/..), dict{host, usr, passwd, database}, 表(Table)名''' units = list(self.__unit.keys()) '''初始化数据库''' self.init_data_from_database(**args[0], database=args[1]) for index in range(len(units)): sql = "SELECT * FROM %s WHERE unit == '%s'" % (args[2], units[index]) data = self.init_data_from_database(sql=args[2]) """#############待续###########""" else: raise ArgumentNumberError(self.log) def __save_parameter(self, unit): """ 保存基元unit训练后的参数 :param unit:基元 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_parameter = path_parameter_ + '/%s' % unit if not os.path.exists(unit_parameter): '''基元文件夹不存在时创建''' os.mkdir(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" hmm = self.__unit[unit] np.save(unit_parameter + '/A.npy', hmm.A) # 保存状态转移矩阵 np.save(unit_parameter + '/pi.npy', hmm.pi) # 保存初始概率矩阵 """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" detail_file = open(unit_parameter + '/detail.csv', 'w+') '''保存GMM参数''' for index_ in range(1, self.__state_num - 1): '''除去前后两个虚函数''' gmm = hmm.profunction[index_] np.save(unit_parameter + '/GMM_%d_means.npy' % index_, gmm.mean) # 保存均值 np.save(unit_parameter + '/GMM_%d_covariance.npy' % index_, gmm.covariance) # 保存协方差矩阵 np.save(unit_parameter + '/GMM_%d_weight.npy' % index_, gmm.alpha) # 保存权重矩阵 detail_file.writelines('GMM_%d %d\n' % (index_, gmm.mixture)) # 保存高斯混合度 """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" with open(path_parameter_ + '/trainInfo_%s.csv' % self.__job_id, 'a+') as trainInfo: trainInfo.writelines('%s\n' % unit) detail_file.close() def __load_trainInfo(self): """ 读取上一次训练结果 :return: 未训练基元集合 """ path_parameter_ = self.__address + '/' + self.__unit_type trainInfoLocation = path_parameter_ + '/trainInfo_%s.csv' % self.__job_id trained_units = [] units = self.__loaded_units if os.path.exists(trainInfoLocation): with open(trainInfoLocation) as trainInfo: u = trainInfo.readline() while u: trained_units.append(u.strip('\n')) u = trainInfo.readline() else: return units wwt_unit = list(set(units).difference(set(trained_units))) # 待训练基元 return wwt_unit def __save_data(self, unit, unit_data): """ 保存每次切分的数据 :param unit: 基元unit :param unit_data: 基元对应数据 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_path = path_parameter_ + '/%s' % unit if not os.path.exists(unit_path): '''基元数据文件夹不存在时创建''' os.mkdir(unit_path) unit_data_path = path_parameter_ + '/%s/data' % unit if not os.path.exists(unit_data_path): '''基元数据文件夹不存在时创建''' os.mkdir(unit_data_path) pid = os.getpid() localtime = int(time.time()) file = open( unit_data_path + '/%s_data_%s_%s.pkl' % (unit, pid, localtime), 'wb') pickle.dump(unit_data, file, protocol=pickle.HIGHEST_PROTOCOL) file.close() def __load_data(self, unit): """ 读取切分的数据 :param unit: 基元unit :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_data_path = path_parameter_ + '/%s/data' % unit if not os.path.exists(unit_data_path): hmm = self.__unit[unit] log = hmm.log # 获取对应基元的日志文件 '''基元数据文件夹不存在''' log.note('基元 %s 不存在数据,结束训练' % unit, cls='w') return None, None unit_data = [] unit_data_t = [] for dir in os.walk(unit_data_path): for filename in dir[2]: file = open(unit_data_path + '/' + filename, 'rb') data = pickle.load(file) unit_data.append(data) unit_data_t.append(len(data)) file.close() return unit_data, unit_data_t def delete_data(self, unit, show_err=False): """ 用于清空data文件夹,释放空间 :param unit: 基元 :param show_err: 文件夹不存在时,输出错误信息 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_path = path_parameter_ + '/%s' % unit if os.path.exists(unit_path) is False: '''基元数据文件夹不存在''' if show_err: self.log.note('不存在基元 %s' % unit, cls='w') return unit_data_path = path_parameter_ + '/%s/data' % unit if os.path.exists(unit_data_path) is False: '''基元数据文件夹不存在''' if show_err: self.log.note('基元 %s 不存在数据' % unit, cls='w') return shutil.rmtree(unit_data_path) def delete_trainInfo(self): """ 清除基元训练信息 :return: """ self.log.note('正在清除基元训练信息......', cls='i') trainInfoLocation = self.__address + '/' + self.__unit_type + '/trainInfo_%s.csv' % self.__job_id if os.path.exists(trainInfoLocation): os.remove(trainInfoLocation) self.log.note('清除基元训练信息完成 √', cls='i') @staticmethod def init_audio(audiopath, labelpath): """ 加载音频地址 :param audiopath: 音频路径 :param labelpath: 标注路径 :return: 音频及其标注地址的迭代器 """ count = 0 # 音频文件数目 for dir in os.walk(audiopath): for _ in dir[2]: count += 1 yield count for dir in os.walk(audiopath): for file in dir[2]: name = file.split('.')[0] wav_name = audiopath + '/%s.wav\n' % name label_name = labelpath + '/%s.wav.trn\n' % name yield wav_name, label_name def __flat_start(self, label_data): """ 均一起步 (停止使用) 计算全局均值和方差 :param label_data: 所有数据 :return: """ '''data为所有数据的合集''' data = list(label_data.values()) _data = None size = 0 for index in range(len(data)): size += sum(data[index][1]) tmp_data = data[index][0][0] for d in range(1, len(data[index][0])): tmp_data = np.append(tmp_data, data[index][0][d], axis=0) if _data is None: _data = tmp_data else: _data = np.append(_data, tmp_data, axis=0) label = list(label_data.keys()) _label = [] for l in label: _label.extend(l.split(',')) '''取不重复基元''' label = list(set(_label)) cluster = Clustering.ClusterInitialization(_data, self.__mix_level, self.__vector_size, self.log) mean, covariance, alpha, clustered_data = cluster.kmeans(algorithm=1) '''训练GMM''' tmp_gmm = Clustering.GMM(None, self.__vector_size, self.__mix_level) tmp_gmm.data = data tmp_gmm.mean = mean tmp_gmm.covariance = covariance tmp_gmm.alpha = alpha '''GMM Baulm-Welch迭代''' tmp_gmm.baulm_welch() '''获取均值、协方差和权重值''' mean = tmp_gmm.mean covariance = tmp_gmm.covariance alpha = tmp_gmm.alpha for i in range(len(label)): hmm = self.__unit[label[i]][1] for j in range(1, len(hmm.profunction) - 1): '''除去前后两个虚方法''' gmm = hmm.profunction[j] gmm.mean = mean gmm.covariance = covariance gmm.alpha = alpha def __cal_hmm(self, unit, unit_data, unit_data_t, correct=None, show_q=False, show_a=False): """ 计算HMM :param unit: 基元 :param unit_data: 该基元对应的数据 :param unit_data_t: 该基元对应的数据长度 :param correct: 纠正函数 :param show_q: 显示当前似然度 :param show_a: 显示重估后状态转移矩阵 :return: """ '''开始训练''' unit_hmm = self.__unit[unit] '''获取数据''' unit_hmm.add_data(unit_data) unit_hmm.add_T(unit_data_t) if len(unit_hmm.data) == 0: return unit_hmm.baulm_welch(correct=correct, show_q=show_q, show_a=show_a) '''清除数据,释放内存''' unit_hmm.clear_result_cache() unit_hmm.clear_data() def __cal_gmm(self, unit, unit_data, init=False, smem=False, show_q=False, c_covariance=1e-3): """ 计算GMM :param unit: 当前基元 :param unit_data: 基元数据 :param init: 是否初始化 :param smem: 是否进行SMEM算法 :param show_q: 显示当前似然度 :param c_covariance: 修正数值,纠正GMM中的Singular Matrix :return: """ hmm = self.__unit[unit] gmms_num = len(hmm.profunction) - 2 # 高斯混合模型数 for i in range(1, len(hmm.profunction) - 1): '''除去前后两个虚方法''' gmm = hmm.profunction[i] gmm.log.note('正在训练GMM%d,共 %d GMM,混合度为 %d' % (i, gmms_num, self.__mix_level), cls='i') data = unit_data[i - 1] # 对应高斯模型的数据 gmm.add_data(data) if len(data) < self.__mix_level: gmm.log.note('数据过少,忽略该组数据', cls='w') continue if init or gmm.mixture != self.__mix_level: # 当初始化模型或高斯混合度变化时,重新聚类 cluster = Clustering.ClusterInitialization( data, self.__mix_level, self.__vector_size, gmm.log) mean, covariance, alpha, clustered_data = cluster.kmeans( algorithm=1, cov_matrix=True) gmm.mixture = self.__mix_level gmm.mean = mean gmm.covariance = covariance gmm.alpha = alpha '''GMM Baulm-Welch迭代''' gmm.baulm_welch(show_q=show_q, smem=smem, c_covariance=c_covariance) gmm.clear_data() # 清空数据内存 @staticmethod def __eq_distribution(data, state_num): """数据均分""" ''' for z_tuple in zip(a,b): for frame in z_tuple: ... 各段数据进行整合,返回的元组长度为压缩前各列表长度的最小值 ''' _data = [ frame for z_tuple in zip(*[child_data for child_data in data]) for frame in z_tuple ] chunk = round(len(_data) / state_num) union_data = [None for _ in range(state_num)] start = 0 end = chunk '''处理前N-1个数据集''' for _ in range(state_num - 1): union_data[_] = _data[start:end] start += chunk end += chunk '''处理最后一个数据集''' last_index = state_num - 1 union_data[last_index] = _data[start:len(_data)] return union_data def __eq_segment(self, data, arg=None, mode='e'): """ 训练等分数据 :param data: 数据序列 :param arg: 可变参数(根据mode不同,意义不同) :param mode: 均分模式: 模式1:(mode='e') :type arg :list // [unit1,unit2,unit3...] 数据标注列表 用于首词训练等分数据,并且保存 模式2:(mode='g') :type arg :int //HMM状态数 重估训练中,将viterbi切分出的数据按HMM状态数等分,将等分的数据返回,用于GMM的训练 :return: mode='e': None mode='g': list[[各段数据] * 状态数] """ if mode is 'e': # equal模式 chunk = len(data) // len(arg) start = 0 for u in arg: end = start + chunk unit_data = data[start:end] start += chunk self.__save_data(u, unit_data) # 保存切分好的数据分片 elif mode is 'g': # gmm模式 chunk = len(data) // arg g_slice = [] # 处理单个语音数据后的均分数据 start = 0 '''添加1 ~ (arg-1)的数据''' for _ in range(arg - 1): end = start + chunk data_slice = data[start:end] g_slice.append(data_slice) start += chunk '''添加最后一个数据''' g_slice.append(data[start:]) return g_slice else: raise ClassError(self.log) def get_gmmdata(self, data): """ 获取重估后gmm数据,用于gmm重估 :param data: 对应基元的所有语音数据 :return: gmm的重估数据 """ data_size = len(data) gmm_num = self.__state_num - 2 g_data = [_ for _ in self.__eq_segment(data[0], gmm_num, mode='g') ] # 所有gmm语音数据的集合 '''合并各段GMM数据''' for index in range(1, data_size): g_slice = self.__eq_segment(data[index], gmm_num, mode='g') for gmm_index in range(gmm_num): g_data[gmm_index] = np.append(g_data[gmm_index], g_slice[gmm_index], axis=0) return g_data def split_data(self, load_line=0, init=True): """ 处理音频数据 :param load_line: 读取标注文件中,标注文字所在的行,默认第0行(即第一行) 如 你好 n i3 h ao3 标注在第2行,因此load_line=1 :param init: 是否初始化参数(均分数据) :return: """ self.log.note('正在获取数据路径列表...', cls='i') load_num = 0 # 已处理音频文件数目 path_file = PARAMETERS_FILE_PATH + '/%s/pathInfo_%s.csv' % ( self.__unit_type, self.__job_id) if not os.path.exists(path_file): raise PathInfoExistError(self.log) path_list = [] # [[音频路径],[标注路径],数据数目] file_count = 0 with open(path_file) as pathInfo: line_audio = pathInfo.readline().strip('\n') line_label = pathInfo.readline().strip('\n') while line_audio: path_list.append([line_audio, line_label]) line_audio = pathInfo.readline().strip('\n') line_label = pathInfo.readline().strip('\n') file_count += 1 pool = Pool(processes=self.processes) self.log.note('处理音频数据中...', cls='i') for path in path_list: # 遍历迭代器 path[0]为音频路径,path[1]为标注路径,path[2]为文件总数 load_num += 1 f_label = open(path[1]) line = load_line label = '' while line >= 0: # 获取对应行 label = f_label.readline() line -= 1 f_label.close() label = label.strip('\n').split(" ") # 标注去回车并按空格形成列表 _args = [load_num, file_count] pool.apply_async(self.multi_split_data, args=(label, path[0], init, *_args)) pool.close() pool.join() self.log.note('音频处理完成 √', cls='i') def multi_split_data(self, label, path, init, *args): """ 多进程处理音频 :param label: 音频标注 :param path: 音频数据路径 :param init: 是否均分音频 :param args: 其他参数(当前处理音频数、总音频数) :return: """ if init: data = self.__load_audio(path) # 加载音频数据 self.__eq_segment(data, label, mode='e') self.log.note('当前已处理音频:%d / %d' % (args[0], args[1]), cls='i') else: data = self.__load_audio(path) # 加载音频数据 label_set = list(set(label)) # 标注基元集合 for label_u in label_set: '''初始化B_p''' self.init_unit(label_u, new_log=init) self.init_parameter(unit=label_u) unit_hmm = self.__unit[label_u] unit_hmm.cal_observation_pro([data], [len(data)]) unit_hmm.clear_data() '''viterbi切分数据''' point, sequence = self.viterbi(label, len(data), 0) sequence_num = len(set(sequence)) # viterbi切分所得序列中,基元个数 label_num = len(label_set) # 数据标注中应出现的基元个数 """序列基元数少于应出现基元数,视为viterbi切分失败,抛弃该数据""" if sequence_num < label_num: self.log.note('viterbi切分失败', cls='w') self.log.note('当前已处理音频:%d / %d' % (args[0], args[1]), cls='i') return """""" """""" """""" """""" """""" """""" """""" """""" """""" "" for label_u in label_set: # 将同类基元数据合并保存 loc_list = AcousticModel.discriminate(label_u, sequence) for loc in loc_list: '''获取同一基元、不同部分的数据''' data_u = data[loc] self.__save_data(label_u, data_u) self.log.note('当前已处理音频:%d / %d' % (args[0], args[1]), cls='i') """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" def training(self, init=True, show_q=False, show_a=False, c_covariance=1e-3): """ 训练参数 采用嵌入式训练,串联标注所对应的HMM :param init: 初始化参数 :param show_q: 显示HMM/GMM当前似然度 :param show_a: 显示HMM重估后状态转移矩阵 :param c_covariance: 修正数值,纠正GMM中的Singular Matrix :return: """ wwt_units = self.__load_trainInfo() # 未训练基元集合 unit_num = len(self.__loaded_units) # 基元全集数目 wwt_unit_num = len(wwt_units) # 未初始化基元集合 init_unit_num = 0 # 已初始化基元数 pool = Pool(processes=self.processes) '''基元训练(初始化/重估)''' for unit in wwt_units: init_unit_num += 1 _args = (show_q, show_a, c_covariance, init_unit_num, wwt_unit_num, unit_num) pool.apply_async(self.multi_training, args=(unit, init, *_args)) pool.close() pool.join() """""" '''清空data文件夹释放空间''' self.log.note('正在释放存储空间......', cls='i') for unit in self.__loaded_units: self.delete_data(unit) self.log.note('释放空间完成 √', cls='i') '''清除基元训练信息''' self.delete_trainInfo() '''''' def multi_training(self, unit, init=True, *args): """ 多进程训练 :param unit: 基元 :param init: 是否初始化 :param args: 承接training方法的各种参数和变量(按在training的出现顺序排列) :return: """ self.init_unit(unit=unit, new_log=init) if init: # 首次训练,需要初始化 self.log.note('正在初始化基元%s,已初始化 %d / %d , 共 %d' % (unit, args[3], args[4], args[5]), cls='i') unit_data, unit_data_t = self.__load_data(unit) if unit_data is None: self.__save_parameter(unit) return '''为GMM划分数据''' unit_data_2 = self.get_gmmdata(unit_data) self.__cal_gmm(unit, unit_data_2, init=init, smem=False, show_q=args[0], c_covariance=args[2]) self.__cal_hmm(unit, unit_data, unit_data_t, show_q=args[0], show_a=args[1]) '''保存该基元参数''' self.__save_parameter(unit) else: # 进行重估 self.init_parameter(unit=unit) self.log.note('正在重估基元%s,已重估 %d / %d , 共 %d' % (unit, args[3], args[4], args[5]), cls='i') unit_data, unit_data_t = self.__load_data(unit) if unit_data is None: self.__save_parameter(unit) return '''为GMM划分数据''' unit_data_2 = self.get_gmmdata(unit_data) self.__cal_gmm(unit, unit_data_2, smem=True, show_q=args[0], c_covariance=args[2]) self.__cal_hmm(unit, unit_data, unit_data_t, show_q=args[0], show_a=args[1]) '''保存该基元参数''' self.__save_parameter(unit) '''关闭日志''' self.log.close() '''''' @staticmethod def discriminate(unit, sequence): """ 区分数据中多次出现的基元,并进行分割处理 :param unit: 基元 :param sequence: vitebi切分后的数据标注 :return: """ loc = np.where(sequence == unit)[0] '''区分化相同标注的不同位置''' seq_num = np.arange(len(loc)) sub = loc - seq_num set_sub = list(set(sub)) '''同一标注、不同位置的数据索引集合''' loc_list = [] for index in range(len(set_sub)): loc_list.append(loc[np.where(sub == set_sub[index])]) return loc_list def embedded(self, label, data_index, alter=31): """ 嵌入式模型(构建句子级HMM) :param label: 标注 :param data_index: 数据索引 :param alter: 选择序号,11111(二进制) = 31为全部生成 :return: """ state_size = (self.__state_num - 2) * len(label) + 2 def embedded_states(): """复合状态集合""" state_list = [label[0]] for i in range(len(label)): state_list.extend( [label[i] for _ in range(self.__state_num - 2)]) state_list.append(label[len(label) - 1]) map_list = list( map(lambda x, y: [x, y], [_ for _ in range(state_size)], state_list)) complex_states = dict(map_list) return complex_states def embedded_observation(): """复合观测集合——None""" complex_observation = ['GMM_probability'] return complex_observation def embedded_A(): """复合状态转移矩阵""" complex_A = np.zeros((state_size, state_size)) complex_A[:self.__state_num - 1, :self.__state_num] = self.__unit[label[0]].A[:-1] for i in range(1, len(label)): A = self.__unit[label[i]].A '''拼接''' a = i * (self.__state_num - 2) + 1 b = (i + 1) * (self.__state_num - 2) + 1 complex_A[a:b, a - 1:a - 1 + self.__state_num] = A[1:-1] return complex_A def embedded_B(): """复合观测矩阵""" i = 0 complex_B = self.__unit[label[0]].B_p[data_index][0:-1] for i in range(1, len(label)): B = self.__unit[label[i]].B_p[data_index] '''拼接''' complex_B = np.append(complex_B, B[1:-1, :], axis=0) '''后续处理''' B = self.__unit[label[i]].B_p[data_index][-1:, :] complex_B = np.append(complex_B, B, axis=0) # 添加最后一个虚函数 return complex_B def embedded_pi(): """复合初始概率矩阵""" complex_pi = np.ones((state_size, )) / state_size return complex_pi '''''' func_list = [ embedded_states, embedded_observation, embedded_A, embedded_B, embedded_pi ] embedded_list = [] for index in range(5): if 2**(5 - index - 1) & alter != 0: embedded_list.append(func_list[index]()) return embedded_list def viterbi(self, label, data_size, data_index): """ 维特比切分 :param label: 标注 :param data_size: 数据长度 :param data_index: 数据索引 :return: """ complex_states, complex_observation, complex_A, complex_B, complex_pi = self.embedded( label, data_index, 31) '''维特比强制对齐''' return LHMM.viterbi(self.log, complex_states, complex_observation, complex_A, complex_B, complex_pi, O_size=data_size, matrix=False, convert=True, end_state_back=False) def __load_audio(self, audiopath): """ 读取音频 :param audiopath: 音频地址,为None时录音生成数据 :return: """ '''获取音频特征向量''' mfcc = self.__audio.MFCC(self.__dct_num) mfcc.init_audio(path=audiopath) '''计算一阶和二阶差分系数''' m = mfcc.mfcc(nfft=512, d1=self.__delta_1, d2=self.__delta_2) vad = self.__audio.VAD() vad.init_mfcc(m) filtered_mfcc = vad.mfcc() return filtered_mfcc class VirtualState(object): """ 为虚状态设立的评分类 """ def __init__(self, p=0.): self.__p = p def point(self, x, log=False, standard=False): """返回评分为p,x接受参数,但不处理""" return self.__p
class AcousticModel(DataInitialization): """声学模型""" def __init__(self, log, unit_type, mode=0, processes=None, job_id=0, console=True, state_num=5, mix_level=1, dct_num=13, delta_1=True, delta_2=True): """ 初始化 :param log: 记录日志 :param mode: 训练模式 :param unit_type: 基元类型 :param processes: 进程数 :param job_id: 作业id :param console: 控制台是否显示基元训练信息 :param state_num: 每个基元的状态数,一般为5个及以上(首尾两个状态为非发射状态) :param mix_level: 高斯混合度 :param dct_num: 标准MFCC维数(如13) :param delta_1: True——计算一阶差分系数,MFCC维度 + vector_size(如13 + 13 = 26) :param delta_2: True——计算二阶差分系数,MFCC维度 + vector_size(如13 + 13 + 13 = 39) """ super().__init__() '''作业id''' self.__job_id = job_id self.__console = console '''保存日志''' self.log = log '''存储所有基元''' self.__loaded_units = [] '''基元类型''' self.__unit_type = unit_type '''基元状态数''' self.__state_num = state_num '''基元参数保存路径''' self.__address = PARAMETERS_FILE_PATH '''高斯混合度''' self.__mix_level = mix_level '''音频处理''' self.__audio = AudioProcessing() '''音频特征向量参数''' self.__dct_num = dct_num self.__delta_1 = delta_1 self.__delta_2 = delta_2 '''特征向量总维度''' self.__vector_size = self.__dct_num if self.__delta_2 is True: self.__vector_size *= 3 elif self.__delta_1 is True: self.__vector_size *= 2 '''声学模型训练模式''' self.__mode = mode '''获取cpu核心数''' cpu_count = os.cpu_count() '''进程池''' if processes is None: self.processes = cpu_count self.log.note('训练进程数:%s' % cpu_count, cls='i') elif processes < 1 or type(processes) is not int: raise CpuCountError elif processes > cpu_count: self.processes = processes self.log.note('训练进程数:%s (>cpu核心数%s,可能影响训练性能)' % (int(processes), cpu_count), cls='w') else: self.processes = processes self.log.note('训练进程数:%s' % processes, cls='i') @property def loaded_units(self): return self.__loaded_units @property def statenum(self): return self.__state_num """解决pickle序列化问题""" def __getstate__(self): state = self.__dict__.copy() state['unit_type'] = state['log'].unit_type state['console'] = state['log'].console del state['log'] # log instance is unpickable return state def __setstate__(self, state): self.__dict__.update(state) self.__dict__['log'] = Log(state['unit_type'], console=state['console']) self.__dict__['log'].append() del state['unit_type'] del state['console'] """""" """""" """""" """""" def load_unit(self, unit_type=None): """ 加载基元文件 :param unit_type: 根据基元类型的文件批量初始化基元 如 路径..AcousticModel/Unit/下有XIF_tone.csv文件,里面含有所有预设基元 :return: """ if unit_type: self.__unit_type = unit_type unit_type_path = UNIT_FILE_PATH + '/' + self.__unit_type if not os.path.exists(unit_type_path): raise UnitFileExistsError(self.__unit_type, self.log) else: '''判断文件夹是否存在,不存在则创建''' if not os.path.exists(PARAMETERS_FILE_PATH): os.mkdir(PARAMETERS_FILE_PATH) if not os.path.exists(PARAMETERS_FILE_PATH + '/' + self.__unit_type): os.mkdir(PARAMETERS_FILE_PATH + '/' + self.__unit_type) with open(unit_type_path) as f: u = f.readline().strip('\n') self.log.note('使用基元: %s' % u, cls='i') self.log.note('加载基元中...', cls='i') while u: u = f.readline() if len(u) == 0: break u = u.strip('\n').split(',') for i in range(len(u)): self.__loaded_units.append(u[i]) self.log.note('基元加载完成 √', cls='i') # 基元载入完成 def init_unit(self, unit, new_log=True, fix_code=0): """ 初始化基元,生成基元的复合数据结构 :param unit: 初始化指定基元 :param new_log: 是否删除先前日志 :param fix_code: 关闭参数更新,000=0 001=1 010=2 100=4... :return: """ """""" '''状态集合''' states = {_: unit for _ in range(self.__state_num)} '''状态转移矩阵''' transmat = np.zeros((self.__state_num, self.__state_num)) '''开始状态,为虚状态,只允许向下一个状态转移''' transmat[0][1] = 1. for j in range(1, self.__state_num - 1): transmat[j][j] = 0.5 # 第一个转移概率 transmat[j][j + 1] = 0.5 # 第二个转移概率 '''创建基元文件夹''' unit_path = PARAMETERS_FILE_PATH + '/%s/%s' % (self.__unit_type, unit) log_hmm_path = unit_path + '/HMM' log_gmm_path = [ unit_path + '/GMM_%d' % gmm_id for gmm_id in range(self.__state_num - 2) ] try: os.mkdir(unit_path) except FileExistsError: pass try: os.mkdir(log_hmm_path) except FileExistsError: pass try: for gmm_id in range(self.__state_num - 2): os.mkdir(log_gmm_path[gmm_id]) except FileExistsError: pass '''''' '''''' '''''' log_hmm = Log(self.__unit_type, log_hmm_path, console=self.__console) log_gmm = [ Log(self.__unit_type, path=log_gmm_path[gmm_id], console=self.__console) for gmm_id in range(self.__state_num - 2) ] if new_log: log_hmm.generate() for gmm_id in range(self.__state_num - 2): log_gmm[gmm_id].generate() else: log_hmm.append() for gmm_id in range(self.__state_num - 2): log_gmm[gmm_id].append() '''初始化GMM''' gmm = [] for gmm_id in range(self.__state_num - 2): gmm.append( Clustering.GMM(log_gmm[gmm_id], dimension=self.__vector_size, mix_level=self.__mix_level, gmm_id=gmm_id)) '''初始化虚状态评分类''' virtual_gmm_1 = AcousticModel.VirtualState(1.) virtual_gmm_2 = AcousticModel.VirtualState(0.) gmm.insert(0, virtual_gmm_1) gmm.append(virtual_gmm_2) '''生成hmm实例''' lhmm = LHMM(states, self.__state_num, log_hmm, transmat=transmat, profunc=gmm, fix_code=fix_code) return lhmm def init_parameter(self, unit, hmm): """ 加载参数 :param unit: 基元 :param hmm: 外部传入的HMM实例 :return: """ address = self.__address + '/' + self.__unit_type unit_path = address + '/%s' % unit hmm.init_parameter(unit_path) for index in range(1, self.__state_num - 1): gmm = hmm.profunction[index] gmm.init_parameter(unit_path) def __save_parameter(self, unit, hmm): """ 保存基元unit训练后的参数 :param unit:基元 :param hmm: 外部传入HMM实例 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_parameter = path_parameter_ + '/%s' % unit if not os.path.exists(unit_parameter): '''基元文件夹不存在时创建''' os.mkdir(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" '''保存HMM参数''' hmm.save_parameter(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" '''保存GMM参数''' for index_ in range(1, self.__state_num - 1): '''除去前后两个虚函数''' profunc = hmm.profunction[index_] profunc.save_parameter(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" with open(path_parameter_ + '/trainInfo_%s.csv' % self.__job_id, 'a+') as trainInfo: trainInfo.writelines('%s\n' % unit) def __save_acc(self, unit, hmm): """ 保存基元的累加器 :param unit: 基元 :param hmm: 外部传入的HMM实例 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_parameter = path_parameter_ + '/%s' % unit if not os.path.exists(unit_parameter): '''基元文件夹不存在时创建''' os.mkdir(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" '''保存HMM参数''' hmm.save_acc(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" '''保存GMM参数''' for index_ in range(1, self.__state_num - 1): '''除去前后两个虚函数''' profunc = hmm.profunction[index_] profunc.save_acc(unit_parameter) def __init_acc(self, unit, hmm): """ 读取基元的累加器 :param unit: 基元 :param hmm: 外部传入的HMM实例 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_parameter = path_parameter_ + '/%s' % unit if not os.path.exists(unit_parameter): '''基元文件夹不存在时创建''' os.mkdir(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" '''保存HMM参数''' hmm.init_acc(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" '''保存GMM参数''' for index_ in range(1, self.__state_num - 1): '''除去前后两个虚函数''' profunc = hmm.profunction[index_] profunc.init_acc(unit_parameter) def __load_trainInfo(self): """ 读取上一次训练结果 :return: 未训练基元集合 """ path_parameter_ = self.__address + '/' + self.__unit_type trainInfoLocation = path_parameter_ + '/trainInfo_%s.csv' % self.__job_id trained_units = [] units = self.__loaded_units if os.path.exists(trainInfoLocation): with open(trainInfoLocation) as trainInfo: u = trainInfo.readline() while u: trained_units.append(u.strip('\n')) u = trainInfo.readline() else: return units wwt_unit = list(set(units).difference(set(trained_units))) # 待训练基元 return wwt_unit def __save_data(self, unit, unit_data): """ 保存每次切分的数据 :param unit: 基元unit :param unit_data: 基元对应数据 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_path = path_parameter_ + '/%s' % unit if not os.path.exists(unit_path): '''基元数据文件夹不存在时创建''' os.mkdir(unit_path) unit_data_path = path_parameter_ + '/%s/data' % unit if not os.path.exists(unit_data_path): '''基元数据文件夹不存在时创建''' os.mkdir(unit_data_path) pid = os.getpid() localtime = int(time.time()) file = open( unit_data_path + '/%s_data_%s_%s.pkl' % (unit, pid, localtime), 'wb') pickle.dump(unit_data, file, protocol=pickle.HIGHEST_PROTOCOL) file.close() def __load_data(self, unit, hmm): """ 读取切分的数据 :param unit: 基元unit :param hmm: 外部传入HMM实例 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_data_path = path_parameter_ + '/%s/data' % unit if not os.path.exists(unit_data_path): log = hmm.log # 获取对应基元的日志文件 '''基元数据文件夹不存在''' log.note('基元 %s 不存在数据,结束训练' % unit, cls='w') return None unit_data = [] for dir in os.walk(unit_data_path): for filename in dir[2]: file = open(unit_data_path + '/' + filename, 'rb') data = pickle.load(file) unit_data.append(data) file.close() return unit_data def delete_buffer_file(self, unit, show_info=False): """ 用于清空缓存文件夹(data/acc),释放空间 :param unit: 基元 :param show_info: 文件夹不存在时,输出错误信息 :return: """ path_parameter_ = self.__address + '/' + self.__unit_type unit_path = path_parameter_ + '/%s' % unit if os.path.exists(unit_path) is False: '''基元数据文件夹不存在''' self.log.note('不存在基元 %s' % unit, cls='w', show_console=show_info) return """删除data文件""" unit_data_path = path_parameter_ + '/%s/data' % unit try: shutil.rmtree(unit_data_path) info_detail_data = '\033[0;30;1mSucceed\033[0m' except FileNotFoundError: info_detail_data = '\033[0;31;1mFailed\033[0m' info = 'Unit: \033[0;30;1m%-5s\033[0m\t**Data File**\tGMM--\t%s\t' % ( unit, info_detail_data) """删除acc文件""" hmm_file = unit_path + '/HMM' hmm_ksai_acc_file = hmm_file + '/ksai-acc' hmm_gamma_acc_file = hmm_file + '/gamma-acc' try: shutil.rmtree(hmm_ksai_acc_file) shutil.rmtree(hmm_gamma_acc_file) info_detail_acc_h = '\033[0;30;1mSucceed\033[0m' except FileNotFoundError: info_detail_acc_h = '\033[0;31;1mFailed\033[0m' info_detail_acc_g = None for gmm_id in range(self.__state_num - 2): gmm_file = unit_path + '/GMM_%d' % gmm_id gmm_acc_file = gmm_file + '/acc' gmm_alpha_acc_file = gmm_file + '/alpha-acc' gmm_mean_acc_file = gmm_file + '/mean-acc' gmm_covariance_acc_file = gmm_file + '/covariance-acc' try: shutil.rmtree(gmm_acc_file) shutil.rmtree(gmm_alpha_acc_file) shutil.rmtree(gmm_mean_acc_file) shutil.rmtree(gmm_covariance_acc_file) info_detail_acc_g = '\033[0;30;1mSucceed\033[0m' except FileNotFoundError: info_detail_acc_g = '\033[0;31;1mFailed\033[0m' info += '**Acc File**\tHMM--\t%s\tGMM--\t%s' % (info_detail_acc_h, info_detail_acc_g) self.log.note(info, cls='i', show_console=show_info) def delete_trainInfo(self): """ 清除基元训练信息 :return: """ self.log.note('正在清除基元训练信息......', cls='i') trainInfoLocation = self.__address + '/' + self.__unit_type + '/trainInfo_%s.csv' % self.__job_id if os.path.exists(trainInfoLocation): os.remove(trainInfoLocation) self.log.note('清除基元训练信息完成 √', cls='i') @staticmethod def init_audio(audiopath, labelpath): """ 加载音频地址 :param audiopath: 音频路径 :param labelpath: 标注路径 :return: 音频及其标注地址的迭代器 """ count = 0 # 音频文件数目 for dir in os.walk(audiopath): for _ in dir[2]: count += 1 yield count for dir in os.walk(audiopath): for file in dir[2]: name = file.split('.')[0] wav_name = audiopath + '/%s.wav\n' % name label_name = labelpath + '/%s.wav.trn\n' % name yield wav_name, label_name def __load_audio(self, audiopath): """ 读取音频 :param audiopath: 音频地址,为None时录音生成数据 :return: """ '''获取音频特征向量''' mfcc = self.__audio.MFCC(self.__dct_num) mfcc.init_audio(path=audiopath) '''计算一阶和二阶差分系数''' m = mfcc.mfcc(nfft=512, d1=self.__delta_1, d2=self.__delta_2) vad = self.__audio.VAD() vad.init_mfcc(m) filtered_mfcc = vad.mfcc() return filtered_mfcc def __flat_start(self, path_list, file_count, proportion=0.25, step=1, differentiation=True, coefficient=1.): """ 均一起步 计算全局均值和方差 :param path_list: 数据路径列表 :param file_count: 数据总量 :param proportion: 训练数据中,用于计算全局均值和协方差的数据占比 :param step: 在帧中跳跃选取的跳跃步长 :param differentiation: GMM中各分模型参数差异化处理 :param coefficient: 差异化程度,区间[0,1] :return: """ self.log.note('flat starting...', cls='i') p_file_count = int(file_count * proportion) p_data = self.__load_audio(path_list[0][0]) p_data = p_data[::step] for index in range(1, p_file_count): data = self.__load_audio(path_list[index][0]) # 加载音频数据 data = data[::step] p_data = np.append(p_data, data, axis=0) cluster = Clustering.ClusterInitialization(p_data, 1, self.__vector_size, self.log) mean, covariance, alpha, clustered_data = cluster.kmeans( algorithm=1, cov_matrix=True) covariance_diagonal = covariance[0].diagonal() units = self.__loaded_units '''''' diff_coefficient = np.zeros((self.__mix_level, 1)) if differentiation: '''差异化处理''' assert 0 <= coefficient <= 1, '差异化系数不满足区间[0,1]' diff_coefficient = (np.random.random( (self.__mix_level, 1)) - np.random.random( (self.__mix_level, 1))) * coefficient for unit in units: hmm = self.init_unit(unit, new_log=True) gmms = hmm.profunction[1:-1] for g in gmms: g.mean = mean.repeat( self.__mix_level, axis=0) + diff_coefficient * covariance_diagonal g.covariance = covariance.repeat(self.__mix_level, axis=0) self.__save_parameter(unit, hmm) self.delete_trainInfo() def __cal_hmm(self, unit, hmm, show_q=False, show_a=False, c_covariance=1e-3): """ 计算HMM :param unit: 基元 :param hmm: 外部传入HMM实例 :param show_q: 显示GMM重估信息 :param show_a: 显示重估后状态转移矩阵 :return: """ '''获取数据''' self.__init_acc(unit, hmm) hmm.update_param(show_q=show_q, show_a=show_a, c_covariance=c_covariance) def __cal_gmm(self, hmm, unit_data, init=False, smem=False, show_q=False, c_covariance=1e-3): """ 计算GMM :param hmm: 外部传入HMM实例 :param unit_data: 基元数据 :param init: 是否初始化 :param smem: 是否进行SMEM算法 :param show_q: 显示当前似然度 :param c_covariance: 修正数值,纠正GMM中协方差值过小问题 :return: """ for i in range(1, self.__state_num - 1): '''除去前后两个虚方法''' gmm = hmm.profunction[i] data = unit_data[i - 1] # 对应高斯模型的数据 gmm.add_data(data) if len(data) < self.__mix_level: gmm.log.note('数据过少,忽略该组数据', cls='w') continue if init or gmm.mixture != self.__mix_level: # 当初始化模型或高斯混合度变化时,重新聚类 cluster = Clustering.ClusterInitialization( data, self.__mix_level, self.__vector_size, gmm.log) mean, covariance, alpha, clustered_data = cluster.kmeans( algorithm=1, cov_matrix=True) gmm.mixture = self.__mix_level gmm.mean = mean gmm.covariance = covariance gmm.alpha = alpha '''GMM Baulm-Welch迭代''' gmm.em(show_q=show_q, smem=smem, c_covariance=c_covariance) gmm.clear_data() # 清空数据内存 @staticmethod def __eq_distribution(data, state_num): """数据均分""" ''' for z_tuple in zip(a,b): for frame in z_tuple: ... 各段数据进行整合,返回的元组长度为压缩前各列表长度的最小值 ''' _data = [ frame for z_tuple in zip(*[child_data for child_data in data]) for frame in z_tuple ] chunk = round(len(_data) / state_num) union_data = [None for _ in range(state_num)] start = 0 end = chunk '''处理前N-1个数据集''' for _ in range(state_num - 1): union_data[_] = _data[start:end] start += chunk end += chunk '''处理最后一个数据集''' last_index = state_num - 1 union_data[last_index] = _data[start:len(_data)] return union_data def __eq_segment(self, data, arg=None, mode='e'): """ 训练等分数据 :param data: 数据序列 :param arg: 可变参数(根据mode不同,意义不同) :param mode: 均分模式: 模式1:(mode='e') :type arg :list // [unit1,unit2,unit3...] 数据标注列表 用于首词训练等分数据,并且保存 模式2:(mode='g') :type arg :int //HMM状态数 重估训练中,将viterbi切分出的数据按HMM状态数等分,将等分的数据返回,用于GMM的训练 :return: mode='e': None mode='g': list[[各段数据] * 状态数] """ if mode is 'e': # equal模式 chunk = len(data) // len(arg) start = 0 for u in arg: end = start + chunk unit_data = data[start:end] start += chunk self.__save_data(u, unit_data) # 保存切分好的数据分片 elif mode is 'g': # gmm模式 chunk = len(data) // arg g_slice = [] # 处理单个语音数据后的均分数据 start = 0 '''添加1 ~ (arg-1)的数据''' for _ in range(arg - 1): end = start + chunk data_slice = data[start:end] g_slice.append(data_slice) start += chunk '''添加最后一个数据''' g_slice.append(data[start:]) return g_slice else: raise ClassError(self.log) def __get_gmmdata(self, data): """ 获取重估后gmm数据,用于gmm重估 :param data: 对应基元的所有语音数据 :return: gmm的重估数据 """ data_size = len(data) gmm_num = self.__state_num - 2 g_data = [_ for _ in self.__eq_segment(data[0], gmm_num, mode='g') ] # 所有gmm语音数据的集合 '''合并各段GMM数据''' for index in range(1, data_size): g_slice = self.__eq_segment(data[index], gmm_num, mode='g') for gmm_index in range(gmm_num): g_data[gmm_index] = np.append(g_data[gmm_index], g_slice[gmm_index], axis=0) return g_data def __get_data_list(self): """读取音频、标注文件路径列表,统计音频数""" self.log.note('正在获取数据路径列表...', cls='i') path_file = PARAMETERS_FILE_PATH + '/%s/pathInfo_%s.csv' % ( self.__unit_type, self.__job_id) if not os.path.exists(path_file): raise PathInfoExistError(self.log) path_list = [] # [[音频路径,标注路径],...] file_count = 0 with open(path_file) as pathInfo: line_audio = pathInfo.readline().strip('\n') line_label = pathInfo.readline().strip('\n') while line_audio: path_list.append([line_audio, line_label]) line_audio = pathInfo.readline().strip('\n') line_label = pathInfo.readline().strip('\n') file_count += 1 return path_list, file_count def __generator(self, path_list, load_line): """ 根据音频路径列表处理音频,并返回标注和处理后的音频特征(MFCC) :param path_list: 音频及其标注的路径列表 :param load_line: 标注文字所在行 :return: """ for path in path_list: # 遍历迭代器 path[0]为音频路径,path[1]为标注路径,path[2]为文件总数 f_label = open(path[1]) line = load_line label = '' while line >= 0: # 获取对应行 label = f_label.readline() line -= 1 f_label.close() label = label.strip('\n').split(" ") # 标注数据,去回车并按空格形成列表 data = self.__load_audio(path[0]) # 音频数据 yield label, data def process_data(self, mode=1, load_line=0, init=True, proportion=0.25, step=1, differentiation=True, coefficient=1): """ 处理音频数据 :param mode: 训练方案 :param load_line: 读取标注文件中,标注文字所在的行,默认第0行(即第一行) 如 你好 n i3 h ao3 标注在第2行,因此load_line=1 :param init: 是否初始化参数(均分数据) :param proportion: (Flat-starting 参数) 训练数据中,用于计算全局均值和协方差的数据占比 :param step: (Flat-starting 参数) 在帧中跳跃选取的跳跃步长 :param differentiation: (Flat-starting 参数) GMM中各分模型参数差异化处理 :param coefficient: (Flat-starting 参数) 差异化程度,区间[0,1] :return: """ self.log.note('处理音频数据中...', cls='i') load_num = 0 # 已处理音频文件数目 path_list, file_count = self.__get_data_list() label_data_generator = self.__generator(path_list, load_line) if mode == 1: fix_code = 2 # 锁定发射概率密度函数的重估(b'010') if not init: self.log.note('Viterbi Alignment...', cls='i') pool = Pool(processes=self.processes) for l, d in label_data_generator: load_num += 1 args = [load_num, file_count, fix_code] pool.apply_async(self.multi_process_data, args=(l, d, init, *args)) pool.close() pool.join() elif mode == 2: if init: self.__flat_start(path_list, file_count, proportion=proportion, step=step, differentiation=differentiation, coefficient=coefficient) else: raise ModeError(self.log) self.log.note('音频处理完成 √', cls='i') def multi_process_data(self, label, data, init, *args): """ 多进程处理数据(方案1) :param label: 音频标注(基元为单位的列表[a,b,c,...]) :param data: 音频数据 :param init: 是否均分音频 :param args: 其他参数(当前处理音频数、总音频数、fix_code) :return: """ data_list = [data] data_t_list = [len(data)] if init: self.__eq_segment(data, label, mode='e') else: label_set = list(set(label)) # 标注基元集合 hmm_list = [] for label_u in label: '''初始化B_p''' unit_hmm = self.init_unit(unit=label_u, new_log=init) self.init_parameter(unit=label_u, hmm=unit_hmm) hmm_list.append(unit_hmm) unit_hmm.cal_observation_pro(data_list, data_t_list) unit_hmm.clear_data() '''生成嵌入式HMM''' complex_states, complex_transmat, complex_prob, complex_pi = self.embedded( label, hmm_list, 0, 15) np.savetxt('prob.csv', complex_prob) '''viterbi切分数据''' point, sequence = self.viterbi(complex_states, complex_transmat, complex_prob, complex_pi) sequence_num = len(set(sequence)) # viterbi切分所得序列中,基元个数 label_num = len(label_set) # 数据标注中应出现的基元个数 """序列基元数少于应出现基元数,视为viterbi切分失败,抛弃该数据""" if sequence_num < label_num: self.log.note('viterbi切分失败', cls='w') self.log.note('当前已切分音频:%d / %d' % (args[0], args[1]), cls='i') return """""" """""" """""" """""" """""" """""" """""" """""" """""" "" for label_u in label_set: # 将同类基元数据合并保存 loc_list = AcousticModel.discriminate(label_u, sequence) for loc in loc_list: '''获取同一基元、不同部分的数据''' data_u = data[loc] self.__save_data(label_u, data_u) '''''' self.log.note('当前已切分音频:%d / %d' % (args[0], args[1]), cls='i') '''''' self.log.close() """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" def training(self, mode=1, init=True, show_q=False, show_a=False, load_line=0, c_covariance=1e-3): """ 训练参数 采用嵌入式训练,串联标注所对应的HMM :param mode: 训练方案 :param init: 初始化参数 :param show_q: 显示HMM/GMM当前似然度 :param show_a: 显示HMM重估后状态转移矩阵 :param load_line: 读取标注文件中,标注文字所在的行,默认第0行(即第一行) :param c_covariance: 修正数值,纠正GMM中的Singular Matrix :return: """ wwt_units = self.__load_trainInfo() # 未训练基元集合 unit_num = len(self.__loaded_units) # 基元全集数目 wwt_unit_num = len(wwt_units) # 未初始化/训练基元集合 trained_unit_num = 0 # 已初始化/训练基元数 if mode == 1: fix_code = 2 pool = Pool(processes=self.processes) '''基元训练(初始化/重估)''' for unit in wwt_units: trained_unit_num += 1 args = (show_q, show_a, c_covariance, trained_unit_num, wwt_unit_num, unit_num) pool.apply_async(self.multi_training, args=(unit, init, *args)) pool.close() pool.join() elif mode == 2: fix_code = 0 else: raise ModeError(self.log) '''嵌入式训练HMM''' self.embedded_training(wwt_units, init=init, load_line=load_line, fix_code=fix_code, show_q=show_q, show_a=show_a, c_covariance=c_covariance) '''清空data文件夹释放空间''' self.log.note('正在释放存储空间......', cls='i') for unit in self.__loaded_units: self.delete_buffer_file(unit, show_info=True) self.log.note('释放空间完成 √', cls='i') '''清除基元训练信息''' self.delete_trainInfo() '''''' def multi_training(self, unit, init, *args): """ 多进程训练(方案1) :param unit: 基元 :param init: 是否初始化 :param args: 承接training方法的各种参数和变量(按在training的出现顺序排列) :return: """ hmm = self.init_unit(unit, new_log=init, fix_code=2) if init: # 首次训练,需要初始化 self.log.note('正在初始化基元%s,已初始化 %d / %d , 共 %d' % (unit, args[3], args[4], args[5]), cls='i') else: # 进行重估 self.log.note('正在重估基元%s,已重估 %d / %d , 共 %d' % (unit, args[3], args[4], args[5]), cls='i') unit_data = self.__load_data(unit, hmm) if unit_data is None: self.__save_parameter(unit, hmm) return '''为GMM划分数据''' unit_data_2 = self.__get_gmmdata(unit_data) self.__cal_gmm(hmm, unit_data_2, init=init, smem=init, show_q=args[0], c_covariance=args[2]) '''保存该基元参数''' self.__save_parameter(unit, hmm) '''关闭日志''' self.log.close() '''''' def embedded_training(self, wwt_units, init=True, load_line=0, fix_code=0, show_q=False, show_a=False, c_covariance=1e-3): """ 嵌入式训练HMM :param wwt_units: 未训练基元集合 :param init: 是否初始化 :param load_line: 读取标注文件中,标注文字所在的行,默认第0行(即第一行) 如 你好 n i3 h ao3 标注在第2行,因此load_line=1 :param fix_code: 参数锁定 :param show_q: 显示HMM/GMM当前似然度 :param show_a: 显示HMM重估后状态转移矩阵 :param c_covariance: 修正数值,纠正GMM中的Singular Matrix :return: """ self.log.note('Embedded Training...', cls='i') """累计ACC""" load_num = 0 # 已处理音频文件数目 pool = Pool(processes=self.processes) path_list, file_count = self.__get_data_list() label_data_generator = self.__generator(path_list, load_line) for l, d in label_data_generator: load_num += 1 args = [show_q, load_num, file_count, fix_code] pool.apply_async(self.multi_embedded_training_1, args=(l, d, init, *args)) pool.close() pool.join() """读取ACC 训练HMM""" pool = Pool(processes=self.processes) unit_num = len(self.__loaded_units) # 基元全集数目 wwt_unit_num = len(wwt_units) # 未初始化/训练基元集合 trained_unit_num = 0 # 已初始化/训练基元数 for unit in wwt_units: trained_unit_num += 1 args = (show_q, show_a, c_covariance, trained_unit_num, wwt_unit_num, unit_num, fix_code) pool.apply_async(self.multi_embedded_training_2, args=(unit, init, *args)) pool.close() pool.join() def multi_embedded_training_1(self, label, data, init, *args): """ 多进程嵌入式训练HMM :param label: 音频标注(基元为单位的列表[a,b,c,...]) :param data: 音频数据 :param init: 是否初始化 :param args: 其他参数(show_q、当前处理音频数、总音频数、fix_code) :return: """ hmm_list = [] data_list = [data] data_t_list = [len(data)] '''为每个HMM计算观测概率密度''' for unit in label: hmm = self.init_unit(unit=unit, new_log=init) self.init_parameter(unit, hmm=hmm) hmm_list.append(hmm) hmm.cal_observation_pro(data_list, data_t_list) hmm.clear_data() '''生成嵌入式HMM''' complex_states, complex_transmat, complex_prob, complex_pi = self.embedded( label, hmm_list, 0, 15) embed_hmm = LHMM(complex_states, self.__state_num, self.log, transmat=complex_transmat, probmat=[complex_prob], pi=complex_pi, hmm_list=hmm_list, fix_code=args[3]) embed_hmm.add_data(data_list) embed_hmm.add_T(data_t_list) embed_hmm.baulm_welch(show_q=args[0]) for index in range(len(label)): self.__save_acc(label[index], hmm_list[index]) self.log.note('当前已处理音频:%d / %d' % (args[1], args[2]), cls='i') '''关闭日志''' self.log.close() def multi_embedded_training_2(self, unit, init, *args): """ 多进程训练(方案2) :param unit: 基元 :param init: 是否初始化 :param args: 承接training方法的各种参数和变量(show_q,show_a, c_covariance, trained_unit_num, wwt_unit_num, unit_num, fix_code) :return: """ self.log.note('正在训练基元%s,已完成 %d / %d , 共 %d' % (unit, args[3], args[4], args[5]), cls='i') hmm = self.init_unit(unit, new_log=init, fix_code=args[6]) self.init_parameter(unit, hmm) self.__cal_hmm(unit, hmm, show_q=args[0], show_a=args[1], c_covariance=args[2]) '''保存参数''' self.__save_parameter(unit, hmm) '''关闭日志''' self.log.close() '''''' @staticmethod def discriminate(unit, sequence): """ 区分数据中多次出现的基元,并进行分割处理 :param unit: 基元 :param sequence: vitebi切分后的数据标注 :return: """ loc = np.where(sequence == unit)[0] '''区分化相同标注的不同位置''' seq_num = np.arange(len(loc)) sub = loc - seq_num set_sub = list(set(sub)) '''同一标注、不同位置的数据索引集合''' loc_list = [] for index in range(len(set_sub)): loc_list.append(loc[np.where(sub == set_sub[index])]) return loc_list def embedded(self, label, hmm_list, data_index, alter=15): """ 嵌入式模型(构建句子级HMM) :param label: 标注 :param hmm_list: 标注所对应的HMM列表[hmm_a,hmm_b,hmm_c,...] :param data_index: 数据索引 :param alter: 选择性生成,1111(二进制) = 15为全部生成 :return: """ state_size = (self.__state_num - 2) * len(hmm_list) + 2 def embedded_states(): """复合状态集合""" state_list = [label[0]] for i in range(len(label)): state_list.extend( [label[i] for _ in range(self.__state_num - 2)]) state_list.append(label[len(label) - 1]) map_list = list( map(lambda x, y: [x, y], [_ for _ in range(state_size)], state_list)) complex_states = dict(map_list) return complex_states def embedded_transmat(): """复合状态转移矩阵""" complex_transmat = np.zeros((state_size, state_size)) complex_transmat[:self.__state_num - 1, :self.__state_num] = hmm_list[0].transmat[:-1] for i in range(0, len(label)): transmat = hmm_list[i].transmat '''拼接''' a = i * (self.__state_num - 2) + 1 b = (i + 1) * (self.__state_num - 2) + 1 complex_transmat[a:b, a - 1:a - 1 + self.__state_num] = transmat[1:-1] return complex_transmat def embedded_prob(): """复合观测矩阵""" i = 0 complex_prob = hmm_list[0].B_p[data_index][0:-1] for i in range(1, len(label)): prob = hmm_list[i].B_p[data_index] '''拼接''' complex_prob = np.append(complex_prob, prob[1:-1, :], axis=0) '''后续处理''' prob = hmm_list[i].B_p[data_index][-1:, :] complex_prob = np.append(complex_prob, prob, axis=0) # 添加最后一个虚函数 return complex_prob def embedded_pi(): """复合初始概率矩阵""" complex_pi = np.ones((state_size, )) / state_size return complex_pi '''''' func_list = [ embedded_states, embedded_transmat, embedded_prob, embedded_pi ] embedded_list = [] for index in range(4): if 2**(4 - index - 1) & alter != 0: embedded_list.append(func_list[index]()) return embedded_list def viterbi(self, complex_states, complex_transmat, complex_prob, complex_pi): """ 维特比切分 :param complex_states: 复合状态矩阵 :param complex_transmat: 复合状态转移矩阵 :param complex_prob: 复合观测矩阵 :param complex_pi: 复合初始概率矩阵 :return: """ '''维特比强制对齐''' return LHMM.viterbi(self.log, complex_states, complex_transmat, complex_prob, complex_pi, convert=True, show_mark_state=True) class VirtualState(object): """ 为虚状态设立的评分类 """ def __init__(self, p=0.): """""" np.seterr(divide='ignore') # 忽略np.log(0.)错误 self.__p = p def point(self, x, log=False, standard=False, record=False): """返回评分为p,x接受参数,但不处理""" if log: return np.log(self.__p) return self.__p
class AcousticModel(DataInitialization): """声学模型""" def __init__(self, state_num=5, mix_level=1, max_mix_level=None, savepath=path_parameter, dct_num=13, delta_1=True, delta_2=True): """ 初始化 :param state_num: 每个基元的状态数,一般为5个及以上 :param mix_level: 高斯混合度 :param max_mix_level: 高斯最大混合度 :param dct_num: 标准MFCC维数(如13) :param delta_1: True——计算一阶差分系数,MFCC维度 + vector_size(如13 + 13 = 26) :param delta_2: True——计算二阶差分系数,MFCC维度 + vector_size(如13 + 13 + 13 = 39) """ super().__init__() '''复合HMM模型''' self.__unit = {} self.__unit_type = None '''基元状态数''' self.__state_num = state_num '''基元参数保存路径''' self.__address = savepath '''高斯混合度''' self.__mix_level = mix_level if max_mix_level is None: self.__max_mix_level = mix_level else: if max_mix_level < mix_level: raise ValueError('Error: 高斯最大混合度小于初始混合度') self.__max_mix_level = max_mix_level '''音频处理''' self.__audio = AudioProcessing() '''音频特征向量参数''' self.__dct_num = dct_num self.__delta_1 = delta_1 self.__delta_2 = delta_2 '''特征向量总维度''' self.__vector_size = self.__dct_num if self.__delta_2 is True: self.__vector_size *= 3 elif self.__delta_1 is True: self.__vector_size *= 2 @property def unit(self): return self.__unit @property def statenum(self): return self.__state_num def initialize_unit(self, unit_type='XIF'): """ 初始化基元 :param unit_type: 基元类型 :return: """ unit_type_path = unit + unit_type self.__unit_type = unit_type if os.path.exists(unit_type_path) is False: raise FileExistsError('Error: 基元文件%s不存在' % unit_type) else: if os.path.exists(path_parameter + unit_type) is False: os.mkdir(path_parameter + unit_type) with open(unit_type_path) as f: u = f.readline() print('使用基元:', u) print('载入基元中...') while u: u = f.readline() if len(u) == 0: break u = u.strip('\n').split(',') for i in range(len(u)): '''状态集合''' states = {_: u[i] for _ in range(self.__state_num)} '''观测概率表示(GMM)''' observations = ['GMM_probability'] '''状态转移矩阵''' A = np.zeros((self.__state_num, self.__state_num)) '''开始状态,为虚状态,只允许向下一个状态转移''' A[0][1] = 1. for j in range(1, self.__state_num - 1): for k in range(j, j + 2): A[j][k] = 0.5 '''初始化GMM''' gmm = [ Clustering.GMM(self.__vector_size, self.__mix_level) for _ in range(self.__state_num - 2) ] '''初始化虚状态评分类''' virtual_gmm_1 = AcousticModel.VirtualState(0.) virtual_gmm_2 = AcousticModel.VirtualState(0.) gmm.insert(0, virtual_gmm_1) gmm.append(virtual_gmm_2) '''生成hmm实例''' lhmm = LHMM(states, observations, None, A=A, profunc=gmm) '''数据结构:{基元:[训练次数,HMM],}''' self.__unit[u[i]] = [0, lhmm] print('基元载入完成 √') def init_parameter(self, *args): """ 加载参数 :param args: 为从本地读取参数传递的参数文件位置信息或数据库配置信息 args为(None,)时从默认地址读取参数,为(path,)时从path 读取参宿;args为(数据库参数信息)时从数据库读取 数据库参数信息: 1、数据库类型(mysql/sqlserver/..) 2、dict{host, usr, passwd, database} 3、表(Table)名 :param path: 参数保存路径 :return: """ print('载入参数中...') if len(args) == 0: address = self.__address + self.__unit_type units = list(self.__unit.keys()) counter_file = open(address + '/counter.csv') '''读取训练次数''' counter_file.readline() # 读取文件描述信息 units_ = counter_file.readline().strip('\n') while units_: units_ = units_.split(' ') self.__unit[units_[0]][0] = int(units_[1]) units_ = counter_file.readline().strip('\n') counter_file.close() '''读取参数''' for index in range(len(units)): unit_path = address + '/%s' % units[index] detail_file = open(unit_path + '/detail.csv') A = np.load(unit_path + '/A.npy') π = np.load(unit_path + '/π.npy') hmm = self.__unit[units[index]][1] hmm.change_A(A) hmm.change_π(π) for index_ in range(1, self.__state_num - 1): '''读取均值、协方差、权重矩阵''' means = np.load(unit_path + '/GMM_%d_means.npy' % index_) covariance = np.load(unit_path + '/GMM_%d_covariance.npy' % index_) alpha = np.load(unit_path + '/GMM_%d_weight.npy' % index_) mix_level = int( detail_file.readline().split()[-1]) # 获取高斯混合度 '''将数据初始化到GMM''' gmm = hmm.profunction[index_] gmm.set_μ(means) gmm.set_sigma(sigma=covariance) gmm.set_alpha(alpha) gmm.set_k(mix_level) detail_file.close() elif len(args) == 3: '''从数据库读取参数,参数包括: 数据库类型(mysql/sqlserver/..), dict{host, usr, passwd, database}, 表(Table)名''' units = list(self.__unit.keys()) '''初始化数据库''' self.init_data_from_database(**args[0], database=args[1]) for index in range(len(units)): sql = "SELECT * FROM %s WHERE unit == '%s'" % (args[2], units[index]) data = self.init_data_from_database(sql=args[2]) """#############待续###########""" else: raise ValueError('Error: 参数数量错误') print('参数载入完成 √') def __save_parameter(self): """ 保存训练后的结果 :return: """ path_parameter_ = self.__address + self.__unit_type '''保存基元训练次数''' counter_file = open(path_parameter_ + '/counter.csv', 'w+') counter_file.writelines('###各基元训练次数###\n') units = list(self.__unit.keys()) for index in range(len(units)): '''写入训练次数''' counter_file.writelines( '%s %d\n' % (units[index], self.__unit[units[index]][0])) unit_parameter = path_parameter_ + '/%s' % units[index] if os.path.exists(unit_parameter) is False: '''基元文件夹不存在时创建''' os.mkdir(unit_parameter) """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" hmm = self.__unit[units[index]][1] np.save(unit_parameter + '/A.npy', hmm.A) # 保存状态转移矩阵 np.save(unit_parameter + '/π.npy', hmm.π) # 保存初始概率矩阵 """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" detail_file = open(unit_parameter + '/detail.csv', 'w+') '''保存GMM参数''' for index_ in range(1, self.__state_num - 1): '''除去前后两个虚函数''' gmm = hmm.profunction[index_] np.save(unit_parameter + '/GMM_%d_means.npy' % index_, gmm.μ) # 保存均值 np.save(unit_parameter + '/GMM_%d_covariance.npy' % index_, gmm.sigma) # 保存协方差矩阵 np.save(unit_parameter + '/GMM_%d_weight.npy' % index_, gmm.alpha) # 保存权重矩阵 detail_file.writelines('GMM_%d %d\n' % (index_, gmm.mixture)) # 保存高斯混合度 """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" detail_file.close() counter_file.close() def __init_audio(self, audiopath, labelpath): """ 加载音频 :param audiopath: 音频路径 :param labelpath: 标注路径 :return: label_data(标注和数据的映射,每个标注对应数据包括 [MFCC * n个音频, 帧长度 * n个音频]) """ label_data = {} audio_data = {} framesize = {} label_list = [] with open(labelpath) as f: '''载入音频标注''' f.readline() label = f.readline() while label: label = label.strip('\n').split(' ') label_list.append(label[0]) if label_data.get(label[0]) is None: label_data[label[0]] = [label[1]] else: label_data[label[0]].append(label[1]) label = f.readline() for dir in os.walk(audiopath): for file in dir[2]: '''文件名即标注''' number = file.split('.')[0] mfcc = self.__load_audio(audiopath=os.path.join(dir[0], file)) audio_data[number] = mfcc framesize[number] = len(mfcc) for key in list(label_data.keys()): index_list = label_data[key] data = [] f_size = [] for index in index_list: data.append(audio_data[index]) f_size.append(framesize[index]) label_data[key] = [data, f_size] label_list = list(set(label_list)) return label_list, label_data def __flat_start(self, label_data): """ 均一起步 计算全局均值和方差 :param label_data: 所有数据 :return: """ '''data为所有数据的合集''' data = list(label_data.values()) _data = None size = 0 for index in range(len(data)): size += sum(data[index][1]) tmp_data = data[index][0][0] for d in range(1, len(data[index][0])): tmp_data = np.append(tmp_data, data[index][0][d], axis=0) if _data is None: _data = tmp_data else: _data = np.append(_data, tmp_data, axis=0) label = list(label_data.keys()) _label = [] for l in label: _label.extend(l.split(',')) '''取不重复基元''' label = list(set(_label)) cluster = Clustering.ClusterInitialization(_data, self.__mix_level, self.__vector_size) _μ, _σ, _alpha, _clustered_data = cluster.kmeans(algorithm=1) '''训练GMM''' tmp_gmm = Clustering.GMM(None, self.__vector_size, self.__mix_level) tmp_gmm.set_data(_data) tmp_gmm.set_μ(_μ) tmp_gmm.set_sigma(σ=_σ) tmp_gmm.set_alpha(_alpha) '''GMM Baulm-Welch迭代''' tmp_gmm.baulm_welch() '''获取均值、协方差和权重值''' mean = tmp_gmm.μ covariance = tmp_gmm.sigma alpha = tmp_gmm.alpha for i in range(len(label)): hmm = self.__unit[label[i]][1] for j in range(1, len(hmm.profunction) - 1): '''除去前后两个虚方法''' gmm = hmm.profunction[j] gmm.set_μ(mean) gmm.set_sigma(sigma=covariance) gmm.set_alpha(alpha) def __initialize_data(self, data, label): """ 初始化基元参数 :param data: 音频数据 :param label: 句中基元标记 :return: """ set_label = list(set(label)) set_label.sort(key=label.index) '''数据等分''' union_data_list, union_data_t_list = AcousticModel.__eq_segment( data, label) virtual_label = [_ for _ in range(self.__state_num - 2)] # 数据再细分 for index in range(len(set_label)): union_data_list_2, union_data_t_list_2 = AcousticModel.__eq_segment( [[union_data_list[index]], [union_data_t_list[index]]], virtual_label) hmm = self.__unit[set_label[index]][1] hmm.add_data(union_data_list) hmm.add_T(union_data_t_list) for index_ in range(self.__state_num - 2): hmm.profunction[index_ + 1].add_data(union_data_list_2[index_]) @staticmethod def __eq_segment(data, label, supplement=False): """数据均分""" set_label = list(set(label)) set_label.sort(key=label.index) label = np.array(label) label_num = len(label) """""" union_data_list = [] union_data_t_list = [] for index in range(len(set_label)): loc = np.where(label == set_label[index])[0] '''数据拼接''' union_data = None union_data_t = 0 for index_ in range(len(data[0])): data_t = data[1][index_] # 对应标注中的一个语音数据数据 if supplement: mod = data_t % label_num else: mod = 0 chunk = (data_t + mod) // label_num if mod > 0: data[0][index_] = np.append(data[0][index_], data[0][index_][-mod:], axis=0) data[1][index_] += mod union_data_t += chunk union_loc_data = [ rv for r in zip(*[ data[0][index_][loc[_] * chunk:(loc[_] + 1) * chunk] for _ in range(len(loc)) ]) for rv in r ] if union_data is None: union_data = union_loc_data else: union_data = np.append(union_data, union_loc_data, axis=0) union_data_list.append(union_data) union_data_t_list.append(union_data_t) return union_data_list, union_data_t_list def __cal_hmm(self, label, correct=None): """计算HMM""" '''开始训练''' hmm = self.__unit[label][1] if len(hmm.data) == 0: return hmm.baulm_welch(correct=correct, show_q=True) def __cal_gmm(self, label, c=True): """初始化GMM""" hmm = self.__unit[label][1] for i in range(1, len(hmm.profunction) - 1): '''除去前后两个虚方法''' gmm = hmm.profunction[i] data = gmm.data if len(data) < self.__mix_level: continue if c: '''重新聚类''' cluster = Clustering.ClusterInitialization( data, self.__mix_level, self.__vector_size) μ, σ, alpha, clustered_data = cluster.kmeans(algorithm=1) gmm.set_k(self.__mix_level) gmm.set_μ(μ) gmm.set_sigma(σ=σ) gmm.set_alpha(alpha) '''GMM Baulm-Welch迭代''' gmm.baulm_welch(show_q=True, smem=True) else: gmm.baulm_welch(show_q=True) gmm.clear_data() # 清空数据内存 def training(self, audiopath, labelpath, flat_start=True, t=4, batch_train=False): """ 训练参数 采用嵌入式训练,串联标注所对应的HMM :param audiopath: 音频路径 :param labelpath: 标注路径 :param flat_start: 采用均一起步初始化 :param t: 训练迭代次数 :param batch_train: 批量训练,默认False(逐条数据训练) :return: """ def correct(A): """状态转移矩阵修正函数""" A[np.where((A > 0) & (A < 1e-4))] = 1e-4 '''规范化''' sum_A = A.sum(axis=1) sum_A[np.where(sum_A == 0.)] = 1. A /= sum_A.reshape((len(sum_A), 1)) return A label_list, label_data = self.__init_audio(audiopath=audiopath, labelpath=labelpath) if flat_start: '''均一起步''' self.__flat_start(label_data) else: '''分段K均值''' print('分割数据中...') for label in label_list: _label = label.split(',') self.__initialize_data(label_data[label], _label) print('初始化参数...') units = list(self.__unit.keys()) for key in units: print('初始化基元:', key) self.__cal_gmm(key, c=True) self.__cal_hmm(key, correct=None) point = -float('inf') # 总评分 current_t = 0 flag = False # 高斯混合度增加的标志 while current_t < t: point_sum = 0. # 累计评分 print('当前评分:', point) for label in label_list: '''分解标记为基元''' _label = label.split(',') label_ = list(set(_label)) '''保持原来顺序''' label_.sort(key=_label.index) data = [] data_t = [] if batch_train: data.append(label_data[label][0]) data_t.append(label_data[label][1]) else: data = [[_] for _ in label_data[label][0]] data_t = [[_] for _ in label_data[label][1]] for data_index in range(len(data)): for j in range(len(label_)): '''清空结果集''' hmm = self.__unit[label_[j]][1] hmm.clear_result_cache() hmm.cal_observation_pro(data[data_index], data_t[data_index]) hmm.clear_data() """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" "" sequence_label = [] for i in range(len(data_t[data_index])): point_, sequence = self.viterbi( _label, data_t[data_index][i], i) point_sum += point_ '''对每个数据进行维特比切分''' sequence_label.append(sequence) '''viterbi切分重估''' self.__re_estimate(_label, data, data_index, sequence_label) units = list(self.__unit.keys()) for key in units: print('重估基元:', key) if flag: self.__cal_gmm(key, c=True) else: '''直接使用BW算法''' self.__cal_gmm(key, c=False) self.__cal_hmm(key) '''训练次数+1''' current_t += 1 if self.__mix_level < self.__max_mix_level: self.__mix_level += 1 flag = True else: flag = False '''保存参数''' self.__save_parameter() def __re_estimate(self, label, data, data_index, sequence_label): """ 对GMM进行参数重估 :param label: 数据标注的重复基元 :param data: 训练数据 :param data_index: 数据索引 :param sequence_label: 维特比切分后的标注序列 :return: """ label_ = list(set(label)) label_.sort(key=label.index) for label_index in range(len(label_)): hmm = self.__unit[label_[label_index]][1] label_data = [None for _ in range(self.__state_num - 2)] for seq_index in range(len(sequence_label)): loc = np.where( sequence_label[seq_index] == label_[label_index])[0] '''区分化相同标注的不同位置''' seq_num = np.arange(len(loc)) sub = loc - seq_num set_sub = list(set(sub)) '''为HMM添加数据''' hmm_data = data[data_index][seq_index][np.where( sequence_label[seq_index] == label_[label_index])] if len(hmm_data) == 0: continue hmm.add_data([hmm_data]) hmm.add_T([len(hmm_data)]) for index_ in range(len(set_sub)): data_ = data[data_index][seq_index][loc[np.where( sub == set_sub[index_])]] chunk = len(data_) // (self.__state_num - 2) tmp_data = [ data_[:chunk], data_[chunk:chunk * 2], data_[chunk * 2:] ] for index in range(self.__state_num - 2): if label_data[index] is None: label_data[index] = tmp_data[index] else: label_data[index] = np.append(label_data[index], tmp_data[index], axis=0) for i in range(1, len(hmm.profunction) - 1): gmm = hmm.profunction[i] gmm.add_data(label_data[i - 1]) def embedded(self, label, data_index, alter=31): """ 嵌入式模型 :param label: 标注 :param data_index: 数据索引 :param alter: 选择序号,11111(二进制) = 31为全部生成 :return: """ state_size = (self.__state_num - 2) * len(label) + 2 def embedded_states(): """复合状态集合""" state_list = [label[0]] for i in range(len(label)): state_list.extend( [label[i] for _ in range(self.__state_num - 2)]) state_list.append(label[len(label) - 1]) map_list = list( map(lambda x, y: [x, y], [_ for _ in range(state_size)], state_list)) complex_states = dict(map_list) return complex_states def embedded_observation(): """复合观测集合——None""" complex_observation = ['GMM_probability'] return complex_observation def embedded_A(): """复合状态转移矩阵""" complex_A = np.zeros((state_size, state_size)) complex_A[:self.__state_num - 1, :self.__state_num] = self.__unit[label[0]][1].A[:-1] for i in range(1, len(label)): A = self.__unit[label[i]][1].A '''拼接''' a = i * (self.__state_num - 2) + 1 b = (i + 1) * (self.__state_num - 2) + 1 complex_A[a:b, a - 1:a - 1 + self.__state_num] = A[1:-1] return complex_A def embedded_B(): """复合观测矩阵""" i = 0 complex_B = self.__unit[label[0]][1].B_p[data_index][0:-1] for i in range(1, len(label)): B = self.__unit[label[i]][1].B_p[data_index] '''拼接''' complex_B = np.append(complex_B, B[1:-1, :], axis=0) '''后续处理''' B = self.__unit[label[i]][1].B_p[data_index][-1:, :] complex_B = np.append(complex_B, B, axis=0) # 添加最后一个虚函数 return complex_B def embedded_π(): """复合初始概率矩阵""" complex_π = np.ones((state_size, )) / state_size return complex_π '''''' func_list = [ embedded_states, embedded_observation, embedded_A, embedded_B, embedded_π ] embedded_list = [] for index in range(5): if 2**(5 - index - 1) & alter != 0: embedded_list.append(func_list[index]()) return embedded_list def viterbi(self, label, data_size, data_index): """ 维特比切分 :param label: 标注 :param data_size: 数据长度 :param data_index: 数据索引 :return: """ complex_states, complex_observation, complex_A, complex_B, complex_π = self.embedded( label, data_index, 31) '''维特比强制对齐''' return LHMM.viterbi(complex_states, complex_observation, complex_A, complex_B, complex_π, O_size=data_size, matrix=False, convert=True, end_state_back=False) def __load_audio(self, audiopath): """ 读取音频 :param audiopath: 音频地址,为None时录音生成数据 :return: """ '''获取音频特征向量''' mfcc = self.__audio.MFCC(self.__dct_num) mfcc.init_audio(path=audiopath) '''计算一阶和二阶差分系数''' m = mfcc.mfcc(nfft=1024, d1=self.__delta_1, d2=self.__delta_2) vad = self.__audio.VAD() vad.init_mfcc(m) filtered_mfcc = vad.mfcc() return m class VirtualState(object): """ 为虚状态设立的评分类 """ def __init__(self, p=0.): self.__p = p def point(self, x, log=False, standard=False): """返回评分为p,x接受参数,但不处理""" return self.__p