class TestModel: def setup_class(self): self.DataSpectrum = DataSpectrum.open("../data/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux", orders=np.array([22])) self.Instrument = TRES() self.HDF5Interface = HDF5Interface("../libraries/PHOENIX_submaster.hdf5") stellar_Starting = {"temp":6000, "logg":4.05, "Z":-0.4, "vsini":10.5, "vz":15.5, "logOmega":-19.665} stellar_tuple = C.dictkeys_to_tuple(stellar_Starting) cheb_tuple = ("c1", "c2", "c3") cov_tuple = ("sigAmp", "logAmp", "l") region_tuple = ("h", "loga", "mu", "sigma") self.Model = Model(self.DataSpectrum, self.Instrument, self.HDF5Interface, stellar_tuple=stellar_tuple, cheb_tuple=cheb_tuple, cov_tuple=cov_tuple, region_tuple=region_tuple, outdir="") def test_update(self): self.Model.OrderModels[0].update_Cheb({"c1": -0.017, "c2": -0.017, "c3": -0.003}) cov_Starting = {"sigAmp":1, "logAmp":-14.0, "l":0.15} self.Model.OrderModels[0].update_Cov(cov_Starting) params = {"temp":6005, "logg":4.05, "Z":-0.4, "vsini":10.5, "vz":15.5, "logOmega":-19.665} self.Model.update_Model(params) #This also updates downsampled_fls #For order in myModel, do evaluate, and sum the results. def test_evaluate(self): self.Model.evaluate() def test_to_json(self): self.Model.to_json() def test_from_json(self): newModel = Model.from_json("final_model.json", self.DataSpectrum, self.Instrument, self.HDF5Interface)
class TestModel: def setup_class(self): self.DataSpectrum = DataSpectrum.open( "../data/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux", orders=np.array([22])) self.Instrument = TRES() self.HDF5Interface = HDF5Interface( "../libraries/PHOENIX_submaster.hdf5") stellar_Starting = { "temp": 6000, "logg": 4.05, "Z": -0.4, "vsini": 10.5, "vz": 15.5, "logOmega": -19.665 } stellar_tuple = C.dictkeys_to_tuple(stellar_Starting) cheb_tuple = ("c1", "c2", "c3") cov_tuple = ("sigAmp", "logAmp", "l") region_tuple = ("h", "loga", "mu", "sigma") self.Model = Model(self.DataSpectrum, self.Instrument, self.HDF5Interface, stellar_tuple=stellar_tuple, cheb_tuple=cheb_tuple, cov_tuple=cov_tuple, region_tuple=region_tuple, outdir="") def test_update(self): self.Model.OrderModels[0].update_Cheb({ "c1": -0.017, "c2": -0.017, "c3": -0.003 }) cov_Starting = {"sigAmp": 1, "logAmp": -14.0, "l": 0.15} self.Model.OrderModels[0].update_Cov(cov_Starting) params = { "temp": 6005, "logg": 4.05, "Z": -0.4, "vsini": 10.5, "vz": 15.5, "logOmega": -19.665 } self.Model.update_Model(params) #This also updates downsampled_fls #For order in myModel, do evaluate, and sum the results. def test_evaluate(self): self.Model.evaluate() def test_to_json(self): self.Model.to_json() def test_from_json(self): newModel = Model.from_json("final_model.json", self.DataSpectrum, self.Instrument, self.HDF5Interface)
class AccuracyComparison: ''' Gather the data products necessary to make a test about accuracy of the reduced grid sizes. ''' def __init__(self, DataSpectrum, Instrument, LibraryHA, LibraryLA, parameters, deltaParameters): '''Initialize the comparison object. :param DataSpectrum: the spectrum that provides a wl grid + natural resolution :type DataSpectrum: :obj:`grid_tools.DataSpectrum` :param Instrument: the instrument object on which the DataSpectrum was acquired (ie, TRES, SPEX...) :type Instrument: :obj:`grid_tools.Instrument` :param LibraryHA: the path to the native resolution spectral library :type LibraryHA: string :param LibraryLA: the path to the approximate spectral library :type LibraryLA: string ''' self.DataSpectrum = DataSpectrum self.Instrument = Instrument self.HDF5InterfaceHA = HDF5Interface(LibraryHA) self.HDF5InterfaceLA = HDF5Interface(LibraryLA) print("Bounds of the grids are") print("HA", self.HDF5InterfaceHA.bounds) print("LA", self.HDF5InterfaceLA.bounds) #If the DataSpectrum contains more than one order, we only take the first one. To get behavior with a # different order, you should only load that via the DataSpectrum(orders=[22]) flag. self.wl = self.DataSpectrum.wls[0] self.fullModelLA = Model(self.DataSpectrum, self.Instrument, self.HDF5InterfaceLA, stellar_tuple=("temp", "logg", "Z", "vsini", "vz", "logOmega"), cheb_tuple=("c1", "c2", "c3"), cov_tuple=("sigAmp", "logAmp", "l"), region_tuple=("loga", "mu", "sigma")) self.modelLA = self.fullModelLA.OrderModels[0] self.fullModelHA = ModelHA(self.DataSpectrum, self.Instrument, self.HDF5InterfaceHA, stellar_tuple=("temp", "logg", "Z", "vsini", "vz", "logOmega"), cheb_tuple=("c1", "c2", "c3"), cov_tuple=("sigAmp", "logAmp", "l"), region_tuple=("loga", "mu", "sigma")) self.modelHA = self.fullModelHA.OrderModels[0] self.parameters = parameters self.deltaParameters = deltaParameters self.base = self.get_specHA(self.parameters) self.baseLA = self.get_specLA(self.parameters) self.approxResid = get_resid_spec( self.base, self.baseLA) #modelHA - modelLA @ parameters def get_specHA(self, parameters): ''' Update the model and then query the spectrum :param parameters: Dictionary of fundamental stellar parameters :type parameters: dict :returns: flux spectrum ''' params = parameters.copy() params.update({"vsini": 0., "vz": 0, "logOmega": 0.}) self.fullModelHA.update_Model(params) return self.modelHA.get_spectrum() def get_specLA(self, parameters): ''' Update the model and then query the spectrum :param parameters: Dictionary of fundamental stellar parameters :type parameters: dict :returns: flux spectrum ''' params = parameters.copy() params.update({"vsini": 0., "vz": 0, "logOmega": 0.}) self.fullModelLA.update_Model(params) return self.modelLA.get_spectrum() def createEnvelopeSpectrum(self, direction='both'): ''' The parameters should always be specified at a grid point of the HDF5 file. For this, do the deltaParameters interpolation. Direction specifies whether to do interpolation up (+ 10 K, etc.), down (- 10 K), or do both and then find the minimum envelope between the two. For now, only up is implemented. ''' #For each key, add the delta parameters temp_params = self.parameters.copy() temp_params["temp"] += self.deltaParameters["temp"] temp_spec = get_resid_spec(self.base, self.get_specHA(temp_params)) logg_params = self.parameters.copy() logg_params["logg"] += self.deltaParameters["logg"] logg_spec = get_resid_spec(self.base, self.get_specHA(logg_params)) Z_params = self.parameters.copy() Z_params["Z"] += self.deltaParameters["Z"] Z_spec = get_resid_spec(self.base, self.get_specHA(Z_params)) self.envelope = get_min_spec([temp_spec, logg_spec, Z_spec]) def plot_quality(self): ''' Visualize the quality of the interpolation. Two-panel plot. Top: HA and LA spectrum Bottom: Residual between HA + LA spectrum and the HA spectrum error bounds for deltaParameters ''' self.createEnvelopeSpectrum() fig, ax = plt.subplots(nrows=2, figsize=(8, 6), sharex=True) ax[0].plot(self.wl, self.base, "b", label="HA") ax[0].plot(self.wl, self.baseLA, "r", label="LA") ax[0].legend() ax[0].set_ylabel(r"$\propto f_\lambda$") ax[0].set_title( "Temp={temp:} logg={logg:} Z={Z:}".format(**self.parameters)) ax[1].semilogy(self.wl, self.approxResid, "k", label="(HA - LA)/HA") ax[1].semilogy(self.wl, self.envelope, "b", label="Interp Envelope") ax[1].legend() ax[1].set_xlabel(r"$\lambda$\AA") ax[1].set_ylabel("fractional error") return fig
class AccuracyComparison: """ Gather the data products necessary to make a test about accuracy of the reduced grid sizes. """ def __init__(self, DataSpectrum, Instrument, LibraryHA, LibraryLA, parameters, deltaParameters): """Initialize the comparison object. :param DataSpectrum: the spectrum that provides a wl grid + natural resolution :type DataSpectrum: :obj:`grid_tools.DataSpectrum` :param Instrument: the instrument object on which the DataSpectrum was acquired (ie, TRES, SPEX...) :type Instrument: :obj:`grid_tools.Instrument` :param LibraryHA: the path to the native resolution spectral library :type LibraryHA: string :param LibraryLA: the path to the approximate spectral library :type LibraryLA: string """ self.DataSpectrum = DataSpectrum self.Instrument = Instrument self.HDF5InterfaceHA = HDF5Interface(LibraryHA) self.HDF5InterfaceLA = HDF5Interface(LibraryLA) print("Bounds of the grids are") print("HA", self.HDF5InterfaceHA.bounds) print("LA", self.HDF5InterfaceLA.bounds) # If the DataSpectrum contains more than one order, we only take the first one. To get behavior with a # different order, you should only load that via the DataSpectrum(orders=[22]) flag. self.wl = self.DataSpectrum.wls[0] self.fullModelLA = Model( self.DataSpectrum, self.Instrument, self.HDF5InterfaceLA, stellar_tuple=("temp", "logg", "Z", "vsini", "vz", "logOmega"), cheb_tuple=("c1", "c2", "c3"), cov_tuple=("sigAmp", "logAmp", "l"), region_tuple=("loga", "mu", "sigma"), ) self.modelLA = self.fullModelLA.OrderModels[0] self.fullModelHA = ModelHA( self.DataSpectrum, self.Instrument, self.HDF5InterfaceHA, stellar_tuple=("temp", "logg", "Z", "vsini", "vz", "logOmega"), cheb_tuple=("c1", "c2", "c3"), cov_tuple=("sigAmp", "logAmp", "l"), region_tuple=("loga", "mu", "sigma"), ) self.modelHA = self.fullModelHA.OrderModels[0] self.parameters = parameters self.deltaParameters = deltaParameters self.base = self.get_specHA(self.parameters) self.baseLA = self.get_specLA(self.parameters) self.approxResid = get_resid_spec(self.base, self.baseLA) # modelHA - modelLA @ parameters def get_specHA(self, parameters): """ Update the model and then query the spectrum :param parameters: Dictionary of fundamental stellar parameters :type parameters: dict :returns: flux spectrum """ params = parameters.copy() params.update({"vsini": 0.0, "vz": 0, "logOmega": 0.0}) self.fullModelHA.update_Model(params) return self.modelHA.get_spectrum() def get_specLA(self, parameters): """ Update the model and then query the spectrum :param parameters: Dictionary of fundamental stellar parameters :type parameters: dict :returns: flux spectrum """ params = parameters.copy() params.update({"vsini": 0.0, "vz": 0, "logOmega": 0.0}) self.fullModelLA.update_Model(params) return self.modelLA.get_spectrum() def createEnvelopeSpectrum(self, direction="both"): """ The parameters should always be specified at a grid point of the HDF5 file. For this, do the deltaParameters interpolation. Direction specifies whether to do interpolation up (+ 10 K, etc.), down (- 10 K), or do both and then find the minimum envelope between the two. For now, only up is implemented. """ # For each key, add the delta parameters temp_params = self.parameters.copy() temp_params["temp"] += self.deltaParameters["temp"] temp_spec = get_resid_spec(self.base, self.get_specHA(temp_params)) logg_params = self.parameters.copy() logg_params["logg"] += self.deltaParameters["logg"] logg_spec = get_resid_spec(self.base, self.get_specHA(logg_params)) Z_params = self.parameters.copy() Z_params["Z"] += self.deltaParameters["Z"] Z_spec = get_resid_spec(self.base, self.get_specHA(Z_params)) self.envelope = get_min_spec([temp_spec, logg_spec, Z_spec]) def plot_quality(self): """ Visualize the quality of the interpolation. Two-panel plot. Top: HA and LA spectrum Bottom: Residual between HA + LA spectrum and the HA spectrum error bounds for deltaParameters """ self.createEnvelopeSpectrum() fig, ax = plt.subplots(nrows=2, figsize=(8, 6), sharex=True) ax[0].plot(self.wl, self.base, "b", label="HA") ax[0].plot(self.wl, self.baseLA, "r", label="LA") ax[0].legend() ax[0].set_ylabel(r"$\propto f_\lambda$") ax[0].set_title("Temp={temp:} logg={logg:} Z={Z:}".format(**self.parameters)) ax[1].semilogy(self.wl, self.approxResid, "k", label="(HA - LA)/HA") ax[1].semilogy(self.wl, self.envelope, "b", label="Interp Envelope") ax[1].legend() ax[1].set_xlabel(r"$\lambda$\AA") ax[1].set_ylabel("fractional error") return fig