def FowlerNordheim(V, params): """Simmons model tunnelling at V>phi V=bias voltage, params=[A, phi, d] A in m^2, phi barrier height in eV, d barrier width in angstrom Simmons model as in Simmons J. App. Phys. 34 6 1963 """ return _SF.FowlerNordheim(V, *params)
def BDR(V, params): """BDR model tunnelling V=bias voltage, params=[A, phi, dphi, d, mass] A: in m^2, phi: average barrier height in eV, dphi: change in barrier height in eV, d: barrier width in angstrom, mass: effective electron mass as a fraction of electron rest mass See Brinkman et. al. J. Appl. Phys. 41 1915 (1970) or Tuan Comm. in Phys. 16, 1, (2006)""" return _SF.BDR(V, *params)
def WLfit(B, params): """Weak localisation VRH(B, params): B = mag. field, params=list of parameter values, s0, B1, B2 2D WL model as per Wu PRL 98, 136801 (2007) Porter PRB 86, 064423 (2012) """ return _SF.WLfit(B, *params)
def FluchsSondheimer(t, params): """Evaluate a Fluchs-Sondheumer model function for conductivity. Args: t (array): Thickness values params (array): [mean-free-path, reflection co-efficient,sigma_0] Returns: Reduced Resistivity Note: Expression used from: G.N.Gould and L.A. Moraga, Thin Solid Films 10 (2), 1972 pp 327-330 """ return _SF.FluchsSondheimer(t, *params)
def strijkers(V, params): """strijkers(V, params): Args: V (array): bias voltages params (list): parameter values: omega, delta,P and Z Note: PCAR fitting Strijkers modified BTK model BTK PRB 25 4515 1982, Strijkers PRB 63, 104510 2000 Only using 1 delta, not modified for proximity """ return _SF.Strijkers(V, *params)
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal # Make some data T = linspace(200, 350, 101) R = SF.modArrhenius(T, 1e6, 0.5, 1.5) * normal( scale=0.00005, loc=1.0, size=len(T)) d = Data(T, R, setas="xy", column_headers=["T", "Rate"]) # Curve_fit on its own d.curve_fit(SF.modArrhenius, p0=[1e6, 0.5, 1.5], result=True, header="curve_fit") d.setas = "xyy" d.plot(fmt=["r.", "b-"]) d.annotate_fit(SF.modArrhenius, x=0.2, y=0.5) # lmfit using lmfit guesses fit = SF.ModArrhenius() p0 = [1e6, 0.5, 1.5] d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "x..y" d.plot() d.annotate_fit(SF.ModArrhenius, x=0.2, y=0.25, prefix="ModArrhenius") d.title = "Modified Arrhenius Test Fit" d.ylabel = "Rate"
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal # Make some data V = linspace(-4, 4, 1001) I = SF.simmons(V, 2500, 5.2, 15.0) + normal(size=len(V), scale=100e-9) dI = ones_like(V) * 100e-9 d = Data(V, I, dI, setas="xye", column_headers=["Bias", "Current", "Noise"]) d.curve_fit(SF.simmons, p0=[2500, 5.2, 15.0], result=True, header="curve_fit") d.setas = "xyey" d.plot(fmt=["r.", "b-"]) d.annotate_fit( SF.simmons, x=0.25, y=0.25, prefix="simmons", fontdict={"size": "x-small", "color": "blue"}, ) d.setas = "xye" fit = SF.Simmons() p0 = [2500, 5.2, 15.0] d.lmfit(SF.Simmons, p0=p0, result=True, header="lmfit") d.setas = "x...y" d.plot(fmt="g-") d.annotate_fit(
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal # Make some data V = linspace(-4, 4, 1001) I = SF.simmons(V, 2500, 5.2, 15.0) + normal(size=len(V), scale=100e-9) dI = ones_like(V) * 100e-9 d = Data(V, I, dI, setas="xye", column_headers=["Bias", "Current", "Noise"]) d.curve_fit(SF.simmons, p0=[2500, 5.2, 15.0], result=True, header="curve_fit") d.setas = "xyey" d.plot(fmt=["r.", "b-"]) d.annotate_fit( SF.simmons, x=0.25, y=0.25, prefix="simmons", fontdict={ "size": "x-small", "color": "blue" }, ) d.setas = "xye" fit = SF.Simmons() p0 = [2500, 5.2, 15.0] d.lmfit(SF.Simmons, p0=p0, result=True, header="lmfit")
"""Example of Arrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal #Make some data T=linspace(200,350,101) R=SF.arrhenius(T+normal(size=len(T),scale=1.0,loc=1.0),1E6,0.5) d=Data(T,R,setas="xy",column_headers=["T","Rate"]) #Curve_fit on its own d.curve_fit(SF.arrhenius,p0=[1E6,0.5],result=True,header="curve_fit") d.setas="xyy" d.plot() d.annotate_fit(SF.arrhenius,x=200,y=0.04) # lmfit using lmfit guesses fit=SF.Arrhenius() p0=fit.guess(R,x=T) d.lmfit(fit,p0=p0,result=True,header="lmfit") d.setas="x..y" d.plot() d.annotate_fit(SF.Arrhenius,x=200,y=0.02,prefix="Arrhenius") d.title="Arrhenius Test Fit" d.ylabel="Rate" d.xlabel="Temperature (K)"
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal from copy import copy B = linspace(-0.01, 0.01, 100) params = [1, 1.0e-11, 250] G = SF.langevin(B, *params) + normal(size=len(B), scale=5e-3) dG = ones_like(B) * 5e-3 d = Data(B, G, dG, setas="xye", column_headers=["Field $\\mu_0H (T)$", "Moment", "dM"]) func = lambda H, M_s, m: SF.langevin(H, M_s, m, 250) d.curve_fit(func, p0=copy(params)[0:2], result=True, header="curve_fit") d.setas = "xye" fit = SF.Langevin() p0 = fit.guess(G, x=B) for p, v in zip(p0, params): p0[p].set(v) p0[p].max = v * 5 p0[p].min = 0 p0[p].vary = p != "T" d.lmfit(fit, p0=p0, result=True, header="lmfit")
def PowerLaw(x, p): """Power Law Fitting Equation""" return _SF.PowerLaw(x, *p)
"""Example of PowerLaw Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal # Make some data T = linspace(50, 500, 101) R = SF.powerLaw(T, 1e-2, 0.6666666) * normal(size=len(T), scale=0.1, loc=1.0) d = Data(T, R, setas="xy", column_headers=["T", "Rate"]) # Curve_fit on its own d.curve_fit(SF.powerLaw, p0=[1, 0.5], result=True, header="curve_fit") d.setas = "xyy" d.plot(fmt=["r.", "b-"]) d.annotate_fit(SF.powerLaw, x=0.5, y=0.25) # lmfit using lmfit guesses fit = SF.PowerLaw() p0 = fit.guess(R, x=T) d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "x..y" d.plot(fmt="g-") d.annotate_fit(SF.PowerLaw, x=0.5, y=0.05, prefix="PowerLaw") d.title = "Powerlaw Test Fit" d.ylabel = "Rate" d.xlabel = "Temperature (K)"
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal # Make some data T = linspace(50, 500, 101) R = SF.nDimArrhenius(T + normal(size=len(T), scale=5.0, loc=1.0), 1e6, 0.5, 2) d = Data(T, R, setas="xy", column_headers=["T", "Rate"]) # Curve_fit on its own d.curve_fit(SF.nDimArrhenius, p0=[1e6, 0.5, 2], result=True, header="curve_fit") d.setas = "xyy" d.plot(fmt=["r.", "b-"]) d.annotate_fit(SF.nDimArrhenius, x=0.25, y=0.3) # lmfit using lmfit guesses fit = SF.NDimArrhenius() p0 = fit.guess(R, x=T) d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "x..y" d.plot(fmt="g-") d.annotate_fit(SF.NDimArrhenius, x=0.25, y=0.05, prefix="NDimArrhenius") d.title = "n-D Arrhenius Test Fit" d.ylabel = "Rate" d.xlabel = "Temperature (K)"
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal #Make some data T = linspace(50, 500, 101) R = SF.nDimArrhenius(T + normal(size=len(T), scale=5.0, loc=1.0), 1E6, 0.5, 2) d = Data(T, R, setas="xy", column_headers=["T", "Rate"]) #Curve_fit on its own d.curve_fit(SF.nDimArrhenius, p0=[1E6, 0.5, 2], result=True, header="curve_fit") d.setas = "xyy" d.plot() d.annotate_fit(SF.nDimArrhenius, x=150, y=6E5) # lmfit using lmfit guesses fit = SF.NDimArrhenius() p0 = fit.guess(R, x=T) d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "x..y" d.plot() d.annotate_fit(SF.NDimArrhenius, x=150, y=3.5E5, prefix="NDimArrhenius") d.title = "n-D Arrhenius Test Fit" d.ylabel = "Rate" d.xlabel = "Temperature (K)"
def TersoffHammann(V, params): """TersoffHamman model for tunnelling through STM tip V=bias voltage, params=[A] """ return _SF.TersoffHammann(V, *params)
"""Example of Quadratic Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal import matplotlib.pyplot as plt # Make some data x = linspace(-10, 10, 101) y = SF.quadratic(x + normal(size=len(x), scale=0.1), 4, -2, 11) * normal( size=len(x), scale=0.05, loc=1.0) s = y * 0.05 d = Data(x, y, s, setas="xye", column_headers=["X", "Y"]) d.plot(fmt="r.") d.polyfit(result=True, header="Polyfit") d.setas = "x..y" d.plot(fmt="m-", label="Polyfit") d.text( -9, 450, "Polynominal co-efficients\n{}".format( d["2nd-order polyfit coefficients"]), fontdict={ "size": "x-small", "color": "magenta" }, ) d.setas = "xy" d.curve_fit(SF.quadratic, result=True, header="Curve-fit")
def Linear(x, p): """Simple linear function""" return _SF.Lineaer(x, *p)
def NDimArrhenius(x, p): """Arrhenius Equation without T dependendent prefactor""" return _SF.NDimArrhehius(x, *p)
def Quadratic(x, p): """Simple Qudratic Function.""" return _SF.Quadratic(x, *p)
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal from copy import copy B = linspace(-0.01, 0.01, 100) params = [1, 1.0e-11, 250] G = SF.langevin(B, *params) + normal(size=len(B), scale=5e-3) dG = ones_like(B) * 5e-3 d = Data(B, G, dG, setas="xye", column_headers=["Field $\\mu_0H (T)$", "Moment", "dM"]) func = lambda H, M_s, m: SF.langevin(H, M_s, m, 250) d.curve_fit(func, p0=copy(params)[0:2], result=True, header="curve_fit") d.setas = "xye" fit = SF.Langevin() p0 = fit.guess(G, x=B) for p, v in zip(p0, params): p0[p].set(v) p0[p].max = v * 5 p0[p].min = 0 p0[p].vary = p != "T" d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "xyeyy" d.plot(fmt=["r.", "b-", "g-"])
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal # Make some data V = linspace(-10, 10, 1000) I = SF.bdr(V, 2.5, 3.2, 0.3, 15.0, 1.0) + normal(size=len(V), scale=1.0e-3) dI = ones_like(V) * 1.0e-3 # Curve fit d = Data(V, I, dI, setas="xye", column_headers=["Bias", "Current", "Noise"]) d.curve_fit(SF.bdr, p0=[2.5, 3.2, 0.3, 15.0, 1.0], result=True, header="curve_fit") d.setas = "xyey" d.plot(fmt=["r.", "b-"]) d.annotate_fit( SF.bdr, x=0.6, y=0.05, prefix="bdr", fontdict={"size": "x-small", "color": "blue"} ) # lmfit d.setas = "xy" fit = SF.BDR(missing="drop") p0 = fit.guess(I, x=V) for p, v, mi, mx in zip( ["A", "phi", "dphi", "d", "mass"], [2.500, 3.2, 0.3, 15.0, 1.0], [0.100, 1.0, 0.05, 5.0, 0.5], [10, 10.0, 2.0, 30.0, 5.0], ):
"""Example of Arrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import logspace, log10 from numpy.random import normal #Make some data T = logspace(log10(200), log10(350), 51) params = (1E6, 0.5, 150) noise = 0.5 R = SF.vftEquation(T, *params) * normal(size=len(T), scale=noise, loc=1.0) dR = SF.vftEquation(T, *params) * noise d = Data(T, R, dR, setas="xye", column_headers=["T", "Rate"]) #Curve_fit on its own d.curve_fit(SF.vftEquation, p0=params, result=True, header="curve_fit") # lmfit using lmfit guesses fit = SF.VFTEquation() p0 = params d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "xyeyyy" d.plot(fmt=["k+", "r-", "b-"]) d.yscale = "log" d.ylim = (1E-43, 1) d.annotate_fit(SF.vftEquation, x=270, y=1E-27, fontdict={"size": "x-small"},
def ModArrhenius(x, p): """Arrhenius Equation with a variable T power dependent prefactor""" return _SF.ModArrhehius(x, *p)
"""Example of Quadratic Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal import matplotlib.pyplot as plt # Make some data x = linspace(-10, 10, 101) y = SF.quadratic(x + normal(size=len(x), scale=0.1), 4, -2, 11) * normal( size=len(x), scale=0.05, loc=1.0 ) s = y * 0.05 d = Data(x, y, s, setas="xye", column_headers=["X", "Y"]) d.plot(fmt="r.") d.polyfit(result=True, header="Polyfit") d.setas = "x..y" d.plot(fmt="m-", label="Polyfit") d.text( -9, 450, "Polynominal co-efficients\n{}".format(d["2nd-order polyfit coefficients"]), fontdict={"size": "x-small", "color": "magenta"}, ) d.setas = "xy" d.curve_fit(SF.quadratic, result=True, header="Curve-fit") d.setas = "x...y" d.plot(fmt="b-", label="curve-fit") d.annotate_fit(
"""Example of Arrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ceil, log10, abs from numpy.random import normal # Make some data T = linspace(200, 350, 101) R = SF.arrhenius(T + normal(size=len(T), scale=3.0, loc=0.0), 1e6, 0.5) E = 10 ** ceil(log10(abs(R - SF.arrhenius(T, 1e6, 0.5)))) d = Data(T, R, E, setas="xye", column_headers=["T", "Rate"]) # Curve_fit on its own d.curve_fit(SF.arrhenius, p0=(1e6, 0.5), result=True, header="curve_fit") d.setas = "xyey" d.plot(fmt=["r.", "b-"]) d.annotate_fit( SF.arrhenius, x=0.5, y=0.5, mode="eng", fontdict={"size": "x-small", "color": "blue"}, ) # lmfit using lmfit guesses fit = SF.Arrhenius() d.setas = "xye" d.lmfit(fit, result=True, header="lmfit") d.setas = "x...y" d.plot(fmt="g-") d.annotate_fit(
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal B = linspace(2, 100, 26) params = [12.5, 0.75, 1e3] G = SF.fluchsSondheimer(B, *params) + normal(size=len(B), scale=5e-5) dG = ones_like(B) * 5e-5 d = Data( B, G, dG, setas="xye", column_headers=["Thickness (nm)", "Conductance", "dConductance"], ) d.curve_fit(SF.fluchsSondheimer, p0=params, result=True, header="curve_fit") d.setas = "xye" d.lmfit(SF.FluchsSondheimer, p0=params, result=True, header="lmfit") d.setas = "xyeyy" d.plot(fmt=["r.", "b-", "g-"]) d.annotate_fit(SF.fluchsSondheimer, x=0.2, y=0.6, fontdict={ "size": "x-small",
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from Stoner.plot.formats import TexEngFormatter from numpy import linspace, ones_like from numpy.random import normal from copy import copy B = linspace(1e3, 5e4, 51) params = [2.2, 1e5, 2e2] G = SF.kittelEquation(B, *params) + normal(size=len(B), scale=5e7) dG = ones_like(B) * 5e7 d = Data( B, G, dG, setas="xye", column_headers=["Field $Oe$", r"$\nu (Hz)$", r"\delta $\nu (Hz)$"], ) d.curve_fit(SF.kittelEquation, p0=copy(params), result=True, header="curve_fit") fit = SF.KittelEquation() p0 = fit.guess(G, x=B) d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "xyeyy" d.plot(fmt=["r.", "b-", "g-"])
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from Stoner.plot.formats import TexEngFormatter from numpy import linspace, ones_like from numpy.random import normal from copy import copy B = linspace(0, 5E4, 51) params = [2.2, 1E5, 2E2] G = SF.kittelEquation(B, *params) + normal(size=len(B), scale=5E7) dG = ones_like(B) * 5E7 d = Data(B, G, dG, setas="xye", column_headers=["Field $Oe$", r"$\nu (Hz)$", r"\delta $\nu (Hz)$"]) d.curve_fit(SF.kittelEquation, p0=copy(params), result=True, header="curve_fit") fit = SF.KittelEquation() p0 = fit.guess(G, x=B) d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "xyeyy"
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal # Make some data V = linspace(-4, 4, 101) I = SF.simmons(V, 2500, 3.2, 15.0) + normal(size=len(V), scale=5e-7) dI = ones_like(V) * 500e-9 p0 = p0 = [2500, 3, 10.0] d = Data(V, I, dI, setas="xye", column_headers=["Bias", "Current", "Noise"]) d.curve_fit(SF.simmons, p0=p0, result=True, header="curve_fit", maxfev=2000) d.setas = "xyey" d.plot(fmt=["r,", "b-"], capsize=1) d.annotate_fit( SF.simmons, x=0.25, y=0.25, prefix="simmons", fontdict={ "size": "x-small", "color": "blue" }, ) d.setas = "xye" fit = SF.Simmons()
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal from copy import deepcopy T = linspace(4.2, 300, 101) params = [265, 65, 1.0, 5] params2 = deepcopy(params) G = SF.blochGrueneisen(T, *params) + normal(size=len(T), scale=5E-5) dG = ones_like(T) * 5E-5 d = Data(T, G, dG, setas="xye", column_headers=["Temperature (K)", "Resistivity", "dR"]) d.curve_fit(SF.blochGrueneisen, p0=params, result=True, header="curve_fit") d.setas = "xy" d.lmfit(SF.BlochGrueneisen, p0=params2, result=True, header="lmfit") d.setas = "xyeyy" d.plot(fmt=["r.", "b-", "g-"]) d.annotate_fit(SF.blochGrueneisen, x=20, y=65.05, fontdict={"size": "x-small"}) d.annotate_fit(SF.BlochGrueneisen, x=100, y=65, fontdict={"size": "x-small"},
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal B = linspace(2, 100, 26) params = [12.5, 0.75, 1e3] G = SF.fluchsSondheimer(B, *params) + normal(size=len(B), scale=5e-5) dG = ones_like(B) * 5e-5 d = Data( B, G, dG, setas="xye", column_headers=["Thickness (nm)", "Conductance", "dConductance"], ) d.curve_fit(SF.fluchsSondheimer, p0=params, result=True, header="curve_fit") d.setas = "xye" d.lmfit(SF.FluchsSondheimer, p0=params, result=True, header="lmfit") d.setas = "xyeyy" d.plot(fmt=["r.", "b-", "g-"]) d.annotate_fit( SF.fluchsSondheimer, x=0.2, y=0.6, fontdict={"size": "x-small", "color": "blue"} ) d.annotate_fit( SF.FluchsSondheimer,
"""Example of Arrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ceil, log10, abs as np_abs from numpy.random import normal # Make some data T = linspace(200, 350, 101) R = SF.arrhenius(T + normal(size=len(T), scale=3.0, loc=0.0), 1e6, 0.5) E = 10 ** ceil(log10(np_abs(R - SF.arrhenius(T, 1e6, 0.5)))) d = Data(T, R, E, setas="xye", column_headers=["T", "Rate"]) # Curve_fit on its own d.curve_fit(SF.arrhenius, p0=(1e6, 0.5), result=True, header="curve_fit") d.setas = "xyey" d.plot(fmt=["r.", "b-"]) d.annotate_fit( SF.arrhenius, x=0.5, y=0.5, mode="eng", fontdict={"size": "x-small", "color": "blue"}, ) # lmfit using lmfit guesses fit = SF.Arrhenius() d.setas = "xye" d.lmfit(fit, result=True, header="lmfit") d.setas = "x...y" d.plot(fmt="g-") d.annotate_fit(
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal from copy import copy B = linspace(-8, 8, 201) params = [1e-3, 2.0, 0.25, 1.4] G = SF.wlfit(B, *params) + normal(size=len(B), scale=5e-7) dG = ones_like(B) * 5e-7 d = Data( B, G, dG, setas="xye", column_headers=["Field $\\mu_0H (T)$", "Conductance", "dConductance"], ) d.curve_fit(SF.wlfit, p0=copy(params), result=True, header="curve_fit") d.setas = "xye" d.lmfit(SF.WLfit, p0=copy(params), result=True, header="lmfit") d.setas = "xyeyy" d.plot(fmt=["r.", "b-", "g-"]) d.annotate_fit(SF.wlfit, x=0.05, y=0.75, fontdict={"size": "x-small", "color": "blue"}) d.annotate_fit( SF.WLfit, x=0.05,
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace,ones_like from numpy.random import normal #Make some data V=linspace(-4,4,1000) I=SF.fowlerNordheim(V,2500,3.2,15.0)+normal(size=len(V),scale=10E-6) dI=ones_like(V)*10E-6 d=Data(V,I,dI,setas="xye",column_headers=["Bias","Current","Noise"]) d.curve_fit(SF.fowlerNordheim,p0=[2500,3.2,15.0],result=True,header="curve_fit") d.setas="xyey" d.plot(fmt=["r.","b-"]) d.annotate_fit(SF.fowlerNordheim,x=0,y=10,prefix="fowlerNordheim",fontdict={"size":"x-small"}) d.setas="xye" fit=SF.FowlerNordheim() p0=[2500,5.2,15.0] p0=fit.guess(I,x=V) for p,v,mi,mx in zip(["A","phi","d"],[2500,3.2,15.0],[100,1,5],[1E4,20.0,30.0]): p0[p].value=v p0[p].bounds=[mi,mx] d.lmfit(SF.FowlerNordheim,p0=p0,result=True,header="lmfit") d.setas="x...y" d.plot() d.annotate_fit(fit,x=-3,y=-60,prefix="FowlerNordheim",fontdict={"size":"x-small"}) d.ylabel="Current"
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal # Make some data V = linspace(-4, 4, 1000) I = SF.fowlerNordheim(V, 2500, 3.2, 15.0) + normal(size=len(V), scale=1e-6) dI = ones_like(V) * 10e-6 d = Data(V, I, dI, setas="xye", column_headers=["Bias", "Current", "Noise"]) d.curve_fit(SF.fowlerNordheim, p0=[2500, 3.2, 15.0], result=True, header="curve_fit") d.setas = "xyey" d.plot(fmt=["r.", "b-"]) d.annotate_fit( SF.fowlerNordheim, x=0.2, y=0.6, prefix="fowlerNordheim", fontdict={"size": "x-small", "color": "blue"}, ) d.setas = "xye" fit = SF.FowlerNordheim() p0 = [2500, 5.2, 15.0] p0 = fit.guess(I, x=V) for p, v, mi, mx in zip( ["A", "phi", "d"], [2500, 3.2, 15.0], [100, 1, 5], [1e4, 20.0, 30.0] ):
"""Example of nDimArrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal # Make some data T = linspace(200, 350, 101) R = SF.modArrhenius(T, 1e6, 0.5, 1.5) * normal(scale=0.00005, loc=1.0, size=len(T)) d = Data(T, R, setas="xy", column_headers=["T", "Rate"]) # Curve_fit on its own d.curve_fit(SF.modArrhenius, p0=[1e6, 0.5, 1.5], result=True, header="curve_fit") d.setas = "xyy" d.plot(fmt=["r.", "b-"]) d.annotate_fit(SF.modArrhenius, x=0.2, y=0.5) # lmfit using lmfit guesses fit = SF.ModArrhenius() p0 = [1e6, 0.5, 1.5] d.lmfit(fit, p0=p0, result=True, header="lmfit") d.setas = "x..y" d.plot() d.annotate_fit(SF.ModArrhenius, x=0.2, y=0.25, prefix="ModArrhenius") d.title = "Modified Arrhenius Test Fit" d.ylabel = "Rate" d.xlabel = "Temperature (K)"
"""Test Weak-localisation fitting.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ones_like from numpy.random import normal from copy import deepcopy T = linspace(4.2, 300, 101) params = [265, 65, 1.0, 5] params2 = deepcopy(params) G = SF.blochGrueneisen(T, *params) + normal(size=len(T), scale=5e-5) dG = ones_like(T) * 5e-5 d = Data(T, G, dG, setas="xye", column_headers=["Temperature (K)", "Resistivity", "dR"]) d.curve_fit(SF.blochGrueneisen, p0=params, result=True, header="curve_fit") d.setas = "xy" d.lmfit(SF.BlochGrueneisen, p0=params2, result=True, header="lmfit") d.setas = "xyeyy" d.plot(fmt=["r.", "b-", "g-"]) d.annotate_fit(SF.blochGrueneisen, x=0.65, y=0.35, fontdict={"size": "x-small"}) d.annotate_fit( SF.BlochGrueneisen, x=0.65, y=0.05, fontdict={"size": "x-small"}, prefix="BlochGrueneisen", ) d.title = "Bloch-Grueneisen Fit"