torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") root = './data/mnist' batch_size = args.batch_size n_classes = 10 input_channels = 1 seq_length = int(784 / input_channels) epochs = args.epochs steps = 0 print(args) train_loader, test_loader = data_generator(root, batch_size) permute = torch.Tensor(np.random.permutation(784).astype(np.float64)).long() channel_sizes = [args.nhid] * args.levels kernel_size = args.ksize model = TCN(input_channels, n_classes, channel_sizes, kernel_size=kernel_size, dropout=args.dropout) if args.cuda: model.cuda() permute = permute.cuda() lr = args.lr optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr) def train(ep):
if torch.cuda.is_available(): if not args.cuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) root = './data/mnist' batch_size = args.batch_size n_classes = 10 input_channels = 1 seq_length = int(784 / input_channels) epochs = args.epochs steps = 0 print(args) train_loader, test_loader = data_generator(root, batch_size) permute = torch.Tensor(np.random.permutation(784).astype(np.float64)).long() channel_sizes = [args.nhid] * args.levels kernel_size = args.ksize model = TCN(input_channels, n_classes, channel_sizes, kernel_size=kernel_size, dropout=args.dropout) if args.cuda: model.cuda() permute = permute.cuda() lr = args.lr
default='./data/mnist', help='directory to save model') parser.add_argument('--batch_size', type=int, default=64, metavar='N', help='batch size (default: 64)') args = parser.parse_args() if torch.cuda.is_available(): if not args.cuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) _, test_loader = data_generator(args.datapath, args.batch_size) model = TCN() model.load_state_dict(torch.load(args.modelpath)) model.eval() if args.cuda: model.cuda() model.fast_inference(args.batch_size) def test(): test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: