示例#1
0
def GetABCFromSO3Manifold(SO3dimIdx, amin, amax, W, dW, ddW):
    Ndim = W.shape[0]
    Nwaypoints = W.shape[1]
    duration = 1.0 / float(Nwaypoints - 1)

    [SO3trajstr,
     durationVector] = GetTrajectoryStringSO3(SO3dimIdx, W, dW, ddW)

    if SO3trajstr is None:
        a = np.zeros((Nwaypoints, 1))
        b = np.zeros((Nwaypoints, 1))
        c = np.zeros((Nwaypoints, 1))
        return [a, b, c]

    #SO3traj = Trajectory.PiecewisePolynomialTrajectory.FromString(SO3trajstr)
    #SO3traj.Plot(0.05)
    #plt.show()
    constraintsstr = str(duration)

    SO3dim = len(SO3dimIdx)
    assert (SO3dim == 3)
    #for j in range(SO3dim):
    ### TODO: make generic amax[1] -> amax[SO3]
    constraintsstr += "\n" + ' '.join([str(amax[1]), str(0.0), str(0.0)])
    constraintsstr += "\n" + ' '.join([str(amin[1]), str(0.0), str(0.0)])
    #print constraintsstr
    #print "###########################"

    inertia = eye(3)
    for v in inertia:
        constraintsstr += "\n" + ' '.join([str(i) for i in v])

    abc = TOPPbindings.RunComputeSO3Constraints(SO3trajstr, constraintsstr)
    a, b, c = Extractabc(abc)
    return [a, b, c]
示例#2
0
def Shortcut(robot,
             taumax,
             vmax,
             lietraj,
             maxiter,
             expectedduration=-1,
             meanduration=0,
             upperlimit=-1,
             inertia=None,
             trackingplot=None):
    if trackingplot == 1:
        plt.axis([0, maxiter, 0, lietraj.duration])
        plt.ion()
        plt.show()
        ylabel('Trajectory duration (s)')
        xlabel('Iteration')

    t_sc_start = time.time()
    originalduration = lietraj.duration
    #return shortcuted traj
    if upperlimit < 0:
        dur = lietraj.duration
        upperlimit = lietraj.duration
    else:
        dur = upperlimit
    attempt = 0

    ## for shortcutting
    integrationtimestep = 1e-2
    reparamtimestep = 1e-2
    passswitchpointnsteps = 5
    discrtimestep = 1e-2

    constraintsstring = str(discrtimestep)
    constraintsstring += "\n" + ' '.join([str(v) for v in taumax])
    if not (inertia is None):
        for v in inertia:
            constraintsstring += "\n" + ' '.join([str(i) for i in v])

    assert (dur > 10.0 * discrtimestep)

    ncollision = 0
    nnotretimable = 0
    nnotshorter = 0

    for it in range(maxiter):
        if trackingplot == 1:
            plt.scatter(it, lietraj.duration)
            plt.draw()
        if (
                expectedduration > 0
        ):  # check, if newlietraj.duration is short enough, stop SHORTCUTING
            if (lietraj.duration < expectedduration):
                print "\033[1;32mTrajectory's duration is already shorter than expected time --> stop shortcuting\033[0m"
                break
        if (dur < discrtimestep):
            print "[Utils::Shortcut] trajectory duration is less than discrtimestep.\n"
            break  ## otherwise, this will cause an error in TOPP

        ## select an interval for shortcutting
        t0 = random.rand() * dur

        if meanduration == 0:
            meanduration = dur - t0

        T = random.rand() * min(meanduration, dur - t0)
        t1 = t0 + T

        while (T < 2.0 * discrtimestep):
            t0 = random.rand() * dur
            if meanduration == 0:
                meanduration = dur - t0

            T = random.rand() * min(meanduration, dur - t0)
            t1 = t0 + T

            if t1 > upperlimit:
                t1 = upperlimit
                if (t1 < t0):
                    temp = t0
                    t0 = t1
                    t1 = temp
                    T = t1 - t0

        # print "\n\nShortcutting iteration", it + 1
        # print t0, t1, t1- t0
        # interpolate from t0 to t1
        R_beg = lietraj.EvalRotation(t0)
        R_end = lietraj.EvalRotation(t1)
        omega0 = lietraj.EvalOmega(t0)
        omega1 = lietraj.EvalOmega(t1)

        shortcuttraj = lie.InterpolateSO3(R_beg, R_end, omega0, omega1, T)
        #check feasibility only for the new portion

        isincollision = CheckCollisionTraj(robot, shortcuttraj, R_beg,
                                           discrtimestep)
        if (not isincollision):
            # a,b,c = lie.ComputeSO3Constraints(shortcuttraj, taumax, discrtimestep)
            abc = TOPPbindings.RunComputeSO3Constraints(
                str(shortcuttraj), constraintsstring)  # discrtimestep)
            a, b, c = lie.Extractabc(abc)

            topp_inst = TOPP.QuadraticConstraints(shortcuttraj, discrtimestep,
                                                  vmax, list(a), list(b),
                                                  list(c))
            x = topp_inst.solver
            ret = x.RunComputeProfiles(1, 1)
            if (ret == 1):
                x.resduration
                ## check whether the new one has shorter duration
                if (x.resduration + 0.01 < T):  #skip if not shorter than 0.3 s

                    x.ReparameterizeTrajectory()
                    x.WriteResultTrajectory()
                    TOPPed_shortcuttraj = Trajectory.PiecewisePolynomialTrajectory.FromString(
                        x.restrajectorystring)

                    newlietraj = ReplaceTrajectorySegment(
                        lietraj, TOPPed_shortcuttraj, t0, t1)
                    lietraj = newlietraj
                    dur = lietraj.duration
                    #print "*******************************************"
                    print "Success at iteration", it + 1, ":", t0, t1, "Deta_t:", t1 - t0 - x.resduration
                    attempt += 1
                    #print "T:", nnotretimable, "; S:", nnotshorter , "; C:", ncollision , "; OK:", attempt
                    #print "*******************************************"
                else:
                    # print "Not shorter"
                    nnotshorter += 1
            else:
                # print "Not retimable"
                nnotretimable += 1
        else:
            # print "Collision"
            ncollision += 1

            # print "T:", nnotretimable, "; S:", nnotshorter , "; C:", ncollision , "; OK:", attempt

    print "\033[1;32mT:", nnotretimable, "; S:", nnotshorter, "; C:", ncollision, "; OK:", attempt, "\033[0m"
    print "\033[1;32m", originalduration - lietraj.duration, "sec. shorter\033[0m"
    t_sc_end = time.time()
    print "\033[1;32mRunning time:", t_sc_end - t_sc_start, "sec.\033[0m"

    return lietraj
示例#3
0
3
0.0 0.1 -0.159247917034 0.0789972227119
0.0 0.1 -32.7720979649 43.5627972865
0.0 0.1 0.958473557774 -1.41129807703"""
traj = Trajectory.PiecewisePolynomialTrajectory.FromString(trajstr)
inertia = eye(3)
vmax = ones(3)
accelmax = ones(3)
discrtimestep = 1e-3
constraintsstr = str(discrtimestep)
constraintsstr += "\n" + " ".join([str(a) for a in accelmax])
for v in inertia:
    constraintsstr += "\n" + " ".join([str(i) for i in v])
#When Inertia is an Identity matrix, angular accelerations are the same as torques
t0 = time.time()
abc = TOPPbindings.RunComputeSO3Constraints(trajstr, constraintsstr)
a, b, c = Extractabc(abc)

t1 = time.time()

topp_inst = TOPP.QuadraticConstraints(traj, discrtimestep, vmax, list(a),
                                      list(b), list(c))

x = topp_inst.solver
ret = x.RunComputeProfiles(0, 0)

x.ReparameterizeTrajectory()
t2 = time.time()
print("Compute a,b,c:", t1 - t0)
print("Run TOPP:", t2 - t1)
print("Total:", t2 - t0)
示例#4
0
#         print "in collision", " ", t, "/" , lietraj.duration
#     time.sleep(0.01)

################################# TOPP #############################################
discrtimestep= 1e-2
constraintsstring = str(discrtimestep)
constraintsstring += "\n" + ' '.join([str(v) for v in taumax])
for v in inertia:
    constraintsstring += "\n" + ' '.join([str(i) for i in v])
# Note that, when Inertia is an Identity matrix, angular accelerations are the same as torques
print "\033[93mRunning TOPP", "\033[0m"

t_topp_start = time.time()
traj = Trajectory.PiecewisePolynomialTrajectory.FromString(Utils.TrajStringFromTrajList(Trajlist))

abc = TOPPbindings.RunComputeSO3Constraints(str(traj),constraintsstring)
a,b,c = lie.Extractabc(abc)
# a,b,c = lie.ComputeSO3Constraints(traj, taumax, discrtimestep) #This is the implementation of computing SO3Constraints in Python
topp_inst = TOPP.QuadraticConstraints(traj, discrtimestep, vmax, list(a), list(b), list(c))

x = topp_inst.solver

ret = x.RunComputeProfiles(0,0)
if ret == 1:
    x.ReparameterizeTrajectory()
    x.WriteResultTrajectory()

traj1 = Trajectory.PiecewisePolynomialTrajectory.FromString(x.restrajectorystring)
t_topp_end = time.time()

print "\033[1;32mRunning time:",t_topp_end-t_topp_start, "sec.\033[0m"