示例#1
0
    def test_train_step():
        input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
        input_lengths = torch.randint(100, 129, (8, )).long().to(device)
        input_lengths[-1] = 128
        mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device)
        mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
        speaker_ids = torch.randint(0, 5, (8, )).long().to(device)

        criterion = GlowTTSLoss()

        # model to train
        config = GlowTTSConfig(num_chars=32)
        model = GlowTTS(config).to(device)

        # reference model to compare model weights
        model_ref = GlowTTS(config).to(device)

        model.train()
        print(" > Num parameters for GlowTTS model:%s" %
              (count_parameters(model)))

        # pass the state to ref model
        model_ref.load_state_dict(copy.deepcopy(model.state_dict()))

        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param - param_ref).sum() == 0, param
            count += 1

        optimizer = optim.Adam(model.parameters(), lr=0.001)
        for _ in range(5):
            optimizer.zero_grad()
            outputs = model.forward(input_dummy, input_lengths, mel_spec,
                                    mel_lengths, None)
            loss_dict = criterion(
                outputs["z"],
                outputs["y_mean"],
                outputs["y_log_scale"],
                outputs["logdet"],
                mel_lengths,
                outputs["durations_log"],
                outputs["total_durations_log"],
                input_lengths,
            )
            loss = loss_dict["loss"]
            loss.backward()
            optimizer.step()

        # check parameter changes
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param != param_ref).any(
            ), "param {} with shape {} not updated!! \n{}\n{}".format(
                count, param.shape, param, param_ref)
            count += 1
示例#2
0
 def _test_forward(self, batch_size):
     input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(
         batch_size)
     # create model
     config = GlowTTSConfig(num_chars=32)
     model = GlowTTS(config).to(device)
     model.train()
     print(" > Num parameters for GlowTTS model:%s" %
           (count_parameters(model)))
     # inference encoder and decoder with MAS
     y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths)
     self.assertEqual(y["z"].shape, mel_spec.shape)
     self.assertEqual(y["logdet"].shape, torch.Size([batch_size]))
     self.assertEqual(y["y_mean"].shape, mel_spec.shape)
     self.assertEqual(y["y_log_scale"].shape, mel_spec.shape)
     self.assertEqual(y["alignments"].shape,
                      mel_spec.shape[:2] + (input_dummy.shape[1], ))
     self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1, ))
     self.assertEqual(y["total_durations_log"].shape,
                      input_dummy.shape + (1, ))
示例#3
0
 def test_train_step(self):
     batch_size = BATCH_SIZE
     input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(
         batch_size)
     criterion = GlowTTSLoss()
     # model to train
     config = GlowTTSConfig(num_chars=32)
     model = GlowTTS(config).to(device)
     # reference model to compare model weights
     model_ref = GlowTTS(config).to(device)
     model.train()
     print(" > Num parameters for GlowTTS model:%s" %
           (count_parameters(model)))
     # pass the state to ref model
     model_ref.load_state_dict(copy.deepcopy(model.state_dict()))
     count = 0
     for param, param_ref in zip(model.parameters(),
                                 model_ref.parameters()):
         assert (param - param_ref).sum() == 0, param
         count += 1
     optimizer = optim.Adam(model.parameters(), lr=0.001)
     for _ in range(5):
         optimizer.zero_grad()
         outputs = model.forward(input_dummy, input_lengths, mel_spec,
                                 mel_lengths, None)
         loss_dict = criterion(
             outputs["z"],
             outputs["y_mean"],
             outputs["y_log_scale"],
             outputs["logdet"],
             mel_lengths,
             outputs["durations_log"],
             outputs["total_durations_log"],
             input_lengths,
         )
         loss = loss_dict["loss"]
         loss.backward()
         optimizer.step()
     # check parameter changes
     self._check_parameter_changes(model, model_ref)
示例#4
0
    def test_train_step():
        input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
        input_lengths = torch.randint(100, 129, (8, )).long().to(device)
        input_lengths[-1] = 128
        mel_spec = torch.rand(8, c.audio["num_mels"], 30).to(device)
        mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
        speaker_ids = torch.randint(0, 5, (8, )).long().to(device)

        criterion = GlowTTSLoss()

        # model to train
        model = GlowTTS(
            num_chars=32,
            hidden_channels_enc=48,
            hidden_channels_dec=48,
            hidden_channels_dp=32,
            out_channels=80,
            encoder_type="rel_pos_transformer",
            encoder_params={
                "kernel_size": 3,
                "dropout_p": 0.1,
                "num_layers": 6,
                "num_heads": 2,
                "hidden_channels_ffn": 16,  # 4 times the hidden_channels
                "input_length": None,
            },
            use_encoder_prenet=True,
            num_flow_blocks_dec=12,
            kernel_size_dec=5,
            dilation_rate=1,
            num_block_layers=4,
            dropout_p_dec=0.0,
            num_speakers=0,
            c_in_channels=0,
            num_splits=4,
            num_squeeze=1,
            sigmoid_scale=False,
            mean_only=False,
        ).to(device)

        # reference model to compare model weights
        model_ref = GlowTTS(
            num_chars=32,
            hidden_channels_enc=48,
            hidden_channels_dec=48,
            hidden_channels_dp=32,
            out_channels=80,
            encoder_type="rel_pos_transformer",
            encoder_params={
                "kernel_size": 3,
                "dropout_p": 0.1,
                "num_layers": 6,
                "num_heads": 2,
                "hidden_channels_ffn": 16,  # 4 times the hidden_channels
                "input_length": None,
            },
            use_encoder_prenet=True,
            num_flow_blocks_dec=12,
            kernel_size_dec=5,
            dilation_rate=1,
            num_block_layers=4,
            dropout_p_dec=0.0,
            num_speakers=0,
            c_in_channels=0,
            num_splits=4,
            num_squeeze=1,
            sigmoid_scale=False,
            mean_only=False,
        ).to(device)

        model.train()
        print(" > Num parameters for GlowTTS model:%s" %
              (count_parameters(model)))

        # pass the state to ref model
        model_ref.load_state_dict(copy.deepcopy(model.state_dict()))

        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param - param_ref).sum() == 0, param
            count += 1

        optimizer = optim.Adam(model.parameters(), lr=0.001)
        for _ in range(5):
            optimizer.zero_grad()
            z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward(
                input_dummy, input_lengths, mel_spec, mel_lengths, None)
            loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths,
                                  o_dur_log, o_total_dur, input_lengths)
            loss = loss_dict["loss"]
            loss.backward()
            optimizer.step()

        # check parameter changes
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param != param_ref).any(
            ), "param {} with shape {} not updated!! \n{}\n{}".format(
                count, param.shape, param, param_ref)
            count += 1