示例#1
0
class TestAudio(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super(TestAudio, self).__init__(*args, **kwargs)
        self.ap = AudioProcessor(**conf.audio)

    def test_audio_synthesis(self):
        """ 1. load wav
            2. set normalization parameters
            3. extract mel-spec
            4. invert to wav and save the output
        """
        print(" > Sanity check for the process wav -> mel -> wav")

        def _test(max_norm, signal_norm, symmetric_norm, clip_norm):
            self.ap.max_norm = max_norm
            self.ap.signal_norm = signal_norm
            self.ap.symmetric_norm = symmetric_norm
            self.ap.clip_norm = clip_norm
            wav = self.ap.load_wav(WAV_FILE)
            mel = self.ap.melspectrogram(wav)
            wav_ = self.ap.inv_mel_spectrogram(mel)
            file_name = "/audio_test-melspec_max_norm_{}-signal_norm_{}-symmetric_{}-clip_norm_{}.wav"\
                .format(max_norm, signal_norm, symmetric_norm, clip_norm)
            print(" | > Creating wav file at : ", file_name)
            self.ap.save_wav(wav_, OUT_PATH + file_name)

        # maxnorm = 1.0
        _test(1., False, False, False)
        _test(1., True, False, False)
        _test(1., True, True, False)
        _test(1., True, False, True)
        _test(1., True, True, True)
        # maxnorm = 4.0
        _test(4., False, False, False)
        _test(4., True, False, False)
        _test(4., True, True, False)
        _test(4., True, False, True)
        _test(4., True, True, True)

    def test_normalize(self):
        """Check normalization and denormalization for range values and consistency """
        print(" > Testing normalization and denormalization.")
        wav = self.ap.load_wav(WAV_FILE)
        self.ap.signal_norm = False
        x = self.ap.melspectrogram(wav)
        x_old = x

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.clip_norm = False
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(x_norm.max(), " -- ", x_norm.min())
        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max()
        assert x_norm.min() >= 0 - 1, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.clip_norm = True
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(x_norm.max(), " -- ", x_norm.min())
        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.clip_norm = False
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(x_norm.max(), " -- ", x_norm.min())
        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm - 2, x_norm.min()
        assert x_norm.min() <= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.clip_norm = True
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(x_norm.max(), " -- ", x_norm.min())
        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm, x_norm.min()
        assert x_norm.min() <= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.max_norm = 1.0
        x_norm = self.ap._normalize(x)
        print(x_norm.max(), " -- ", x_norm.min())
        assert (x_old - x).sum() == 0
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= 0, x_norm.min()
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.max_norm = 1.0
        x_norm = self.ap._normalize(x)
        print(x_norm.max(), " -- ", x_norm.min())
        assert (x_old - x).sum() == 0
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm, x_norm.min()
        assert x_norm.min() < 0, x_norm.min()
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3
示例#2
0
class TestAudio(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super(TestAudio, self).__init__(*args, **kwargs)
        self.ap = AudioProcessor(**conf.audio)

    def test_audio_synthesis(self):
        """ 1. load wav
            2. set normalization parameters
            3. extract mel-spec
            4. invert to wav and save the output
        """
        print(" > Sanity check for the process wav -> mel -> wav")

        def _test(max_norm, signal_norm, symmetric_norm, clip_norm):
            self.ap.max_norm = max_norm
            self.ap.signal_norm = signal_norm
            self.ap.symmetric_norm = symmetric_norm
            self.ap.clip_norm = clip_norm
            wav = self.ap.load_wav(WAV_FILE)
            mel = self.ap.melspectrogram(wav)
            wav_ = self.ap.inv_melspectrogram(mel)
            file_name = "/audio_test-melspec_max_norm_{}-signal_norm_{}-symmetric_{}-clip_norm_{}.wav"\
                .format(max_norm, signal_norm, symmetric_norm, clip_norm)
            print(" | > Creating wav file at : ", file_name)
            self.ap.save_wav(wav_, OUT_PATH + file_name)

        # maxnorm = 1.0
        _test(1., False, False, False)
        _test(1., True, False, False)
        _test(1., True, True, False)
        _test(1., True, False, True)
        _test(1., True, True, True)
        # maxnorm = 4.0
        _test(4., False, False, False)
        _test(4., True, False, False)
        _test(4., True, True, False)
        _test(4., True, False, True)
        _test(4., True, True, True)

    def test_normalize(self):
        """Check normalization and denormalization for range values and consistency """
        print(" > Testing normalization and denormalization.")
        wav = self.ap.load_wav(WAV_FILE)
        wav = self.ap.sound_norm(wav)  # normalize audio to get abetter normalization range below.
        self.ap.signal_norm = False
        x = self.ap.melspectrogram(wav)
        x_old = x

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.clip_norm = False
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")
        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max()
        assert x_norm.min() >= 0 - 1, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.clip_norm = True
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.clip_norm = False
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm - 2, x_norm.min()
        assert x_norm.min() <= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.clip_norm = True
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm, x_norm.min()
        assert x_norm.min() <= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.max_norm = 1.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= 0, x_norm.min()
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.max_norm = 1.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm, x_norm.min()
        assert x_norm.min() < 0, x_norm.min()
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3

    def test_scaler(self):
        scaler_stats_path = os.path.join(get_tests_input_path(), 'scale_stats.npy')
        conf.audio['stats_path'] = scaler_stats_path
        conf.audio['preemphasis'] = 0.0
        conf.audio['do_trim_silence'] = True
        conf.audio['signal_norm'] = True

        ap = AudioProcessor(**conf.audio)
        mel_mean, mel_std, linear_mean, linear_std, _ = ap.load_stats(scaler_stats_path)
        ap.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)

        self.ap.signal_norm = False
        self.ap.preemphasis = 0.0

        # test scaler forward and backward transforms
        wav = self.ap.load_wav(WAV_FILE)
        mel_reference = self.ap.melspectrogram(wav)
        mel_norm = ap.melspectrogram(wav)
        mel_denorm = ap._denormalize(mel_norm)
        assert abs(mel_reference - mel_denorm).max() < 1e-4
示例#3
0
class GlowTTS:
    def __init__(self):
        # load the audio processor
        self.audio_processor = AudioProcessor(**TTS_CONFIG.audio)

        # LOAD TTS MODEL
        # multi speaker
        speakers = []
        speaker_id = None

        # load the model
        num_chars = len(phonemes) if TTS_CONFIG.use_phonemes else len(symbols)
        self.model = setup_model(num_chars, len(speakers), TTS_CONFIG)

        # load model state
        self.model, _ = load_checkpoint(self.model,
                                        TTS_MODEL,
                                        use_cuda=USE_CUDA)
        self.model.eval()
        self.model.store_inverse()

        # LOAD VOCODER MODEL
        self.vocoder_model = setup_generator(VOCODER_CONFIG)
        self.vocoder_model.load_state_dict(
            torch.load(VOCODER_MODEL, map_location="cpu")["model"])
        self.vocoder_model.remove_weight_norm()
        self.vocoder_model.inference_padding = 0

        # scale factor for sampling rate difference
        self.scale_factor = [
            1, VOCODER_CONFIG['audio']['sample_rate'] /
            self.audio_processor.sample_rate
        ]
        print(f"scale_factor: {self.scale_factor}")

        self.ap_vocoder = AudioProcessor(**VOCODER_CONFIG['audio'])
        if USE_CUDA:
            self.vocoder_model.cuda()
        self.vocoder_model.eval()

    def text_to_speech(self,
                       text,
                       length_scale=1.1,
                       noise_scale=0.4,
                       speaker_id=None,
                       use_gl=False):
        # run tts
        target_sr = TTS_CONFIG.audio['sample_rate']
        waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs =\
            synthesis(self.model,
                    text,
                    TTS_CONFIG,
                    USE_CUDA,
                    self.audio_processor,
                    speaker_id,
                    None,
                    False,
                    TTS_CONFIG.enable_eos_bos_chars,
                    use_gl)
        # run vocoder
        mel_postnet_spec = self.audio_processor._denormalize(
            mel_postnet_spec.T).T
        if not use_gl:
            target_sr = VOCODER_CONFIG.audio['sample_rate']
            vocoder_input = self.ap_vocoder._normalize(mel_postnet_spec.T)
            if self.scale_factor[1] != 1:
                vocoder_input = interpolate_vocoder_input(
                    self.scale_factor, vocoder_input)
            else:
                vocoder_input = torch.tensor(vocoder_input).unsqueeze(0)
            waveform = self.vocoder_model.inference(vocoder_input)
        # format output
        if USE_CUDA and not use_gl:
            waveform = waveform.cpu()
        if not use_gl:
            waveform = waveform.numpy()
        waveform = waveform.squeeze()

        return waveform