class MultibandMelganGenerator(MelganGenerator): def __init__( self, in_channels=80, out_channels=4, proj_kernel=7, base_channels=384, upsample_factors=(2, 8, 2, 2), res_kernel=3, num_res_blocks=3, ): super().__init__( in_channels=in_channels, out_channels=out_channels, proj_kernel=proj_kernel, base_channels=base_channels, upsample_factors=upsample_factors, res_kernel=res_kernel, num_res_blocks=num_res_blocks, ) self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0) def pqmf_analysis(self, x): return self.pqmf_layer.analysis(x) def pqmf_synthesis(self, x): return self.pqmf_layer.synthesis(x) @torch.no_grad() def inference(self, cond_features): cond_features = cond_features.to(self.layers[1].weight.device) cond_features = torch.nn.functional.pad( cond_features, (self.inference_padding, self.inference_padding), "replicate") return self.pqmf_synthesis(self.layers(cond_features))
def test_pqmf(): w, sr = load(WAV_FILE) layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0) w, sr = load(WAV_FILE) w2 = torch.from_numpy(w[None, None, :]) b2 = layer.analysis(w2) w2_ = layer.synthesis(b2) print(w2_.max()) print(w2_.min()) print(w2_.mean()) sf.write('pqmf_output.wav', w2_.flatten().detach(), sr)