K_S_min = 0. K_S_max = 13.9 zbins = [(0.,0.24)]#, (0.,0.08), (0.08,0.4)] bias = 1.24 nsims = 500 ncosmo = 100 fsky = 0 # Planck chains planck_chains_file = '/Users/fbianchini/Downloads/base_planck_lowl_lowLike_highL/base/planck_lowl_lowLike_highL/base_planck_lowl_lowLike_highL_4.txt' planck_chains = np.loadtxt(planck_chains_file) # Load Cat print("...loading 2MPZ catalogue...") twoMPZ_cat = 'fits/results16_23_12_14_73.fits' twompz = Load2MPZ(twoMPZ_cat, K_S_min=K_S_min, K_S_max=K_S_max) print("...done...") # Data spectra clkg = {} clgg = {} err_clkg = {} err_clgg = {} for zbin in zbins: if fsky: file_clkg = 'spectra/2MPZ_Planck2015_clkg_dl'+str(delta_ell)+'_lmin_'+str(lmin)+'_lmax'+str(lmax)+'_KS_min_'+str(K_S_min)+'_KS_max_'+str(K_S_max)+'_nside256_zmin_'+str(zbin[0])+'_zmax'+str(zbin[1])+'_split_fsky.dat' file_clgg = 'spectra/2MPZ_clgg_dl'+str(delta_ell)+'_lmin_'+str(lmin)+'_lmax'+str(lmax)+'_KS_min_'+str(K_S_min)+'_KS_max_'+str(K_S_max)+'_nside256_zmin_'+str(zbin[0])+'_zmax'+str(zbin[1])+'_split_fsky.dat' else: file_clkg = 'spectra/2MPZ_Planck2015_clkg_dl'+str(delta_ell)+'_lmin_'+str(lmin)+'_lmax'+str(lmax)+'_KS_min_'+str(K_S_min)+'_KS_max_'+str(K_S_max)+'_nside256_zmin_'+str(zbin[0])+'_zmax'+str(zbin[1])+'_split.dat' file_clgg = 'spectra/2MPZ_clgg_dl'+str(delta_ell)+'_lmin_'+str(lmin)+'_lmax'+str(lmax)+'_KS_min_'+str(K_S_min)+'_KS_max_'+str(K_S_max)+'_nside256_zmin_'+str(zbin[0])+'_zmax'+str(zbin[1])+'_split.dat'
def main(args): SetPlotStyle() # Params 'n' stuff fits_planck_mask = '../Data/mask_convergence_planck_2015_512.fits' fits_planck_map = '../Data/convergence_planck_2015_512.fits' twoMPZ_mask = 'fits/2MPZ_mask_tot_256.fits' # N_side = 256 twoMPZ_cat = 'fits/results16_23_12_14_73.fits' twoMPZ_cat2 = 'fits/results2_14_20_37_1053.fits.gz' fits_ebv = 'fits/lambda_sfd_ebv.fits' nsidelow = 64 nside = args.nside do_plots = False delta_ell = args.delta_ell lmin = args.lmin lmax = args.lmax K_S_min = args.K_S_min K_S_max = args.K_S_max # lbmin = 2 # lbmax = 10 # Load Cat and Mask print("...loading 2MPZ catalogue...") twompz = Load2MPZ(twoMPZ_cat, K_S_min=K_S_min, K_S_max=K_S_max) twompz2 = Load2MPZ(twoMPZ_cat2, K_S_min=K_S_min, K_S_max=K_S_max) print("...done...") # E(B-V) reddening map by Schlegel+ in gal coord at nside=512 ebv = hp.read_map(fits_ebv, verbose=False) ebv = hp.ud_grade(ebv, nsidelow, pess=True) A_K = ebv * 0.367 # K-band correction for Galactic extinction print("...Reddening map loaded...") # Get nstar map nstar = GetNstarMap(twompz['RA'], twompz['DEC'], twompz['STARDENSITY'], nsidelow, rad=True) # Get 2MPZ mask (A_K + nstar + counts) # !!! "torque rod gashes" still need to be removed !!! mask2mpz = Get2MPZMask(A_K, nstar, nside=nside, maskcnt=hpy.GuessMask(twompz['RA'], twompz['DEC'], nsidelow, rad=True)) print("Mask f_sky is %3.2f" % np.mean(mask2mpz)) # Load Planck CMB lensing map 'n' mask print("...loading Planck map/mask...") planck_map, planck_mask = LoadPlanck(fits_planck_map, fits_planck_mask, nside, do_plots=0, filt_plank_lmin=0) print("...done...") print("...reading 2MPZ mask...") mask = hp.read_map(twoMPZ_mask, verbose=False) nside_mask = hp.npix2nside(mask.size) if nside_mask != nside: mask = hp.ud_grade(mask, nside) print("...done...") # Common Planck & WISExSCOS mask mask *= planck_mask # embed() # Counts n overdesnity map cat_tmp = twompz[(twompz.ZPHOTO >= args.zmin) & (twompz.ZPHOTO < args.zmax)] a, b = train_test_split(cat_tmp, test_size=0.5) counts_a = hpy.GetCountsMap(a.RA, a.DEC, nside, coord='G', rad=True) counts_b = hpy.GetCountsMap(b.RA, b.DEC, nside, coord='G', rad=True) # hp.write_map('fits/counts_'+zbin+'_sum.fits', counts_sum[zbin]) # hp.write_map('fits/counts_'+zbin+'_diff.fits', counts_diff[zbin]) print("\tNumber of sources in bin [%.2f,%.2f) is %d" % (args.zmin, args.zmax, np.sum((counts_a + counts_b) * mask))) print("...converting to overdensity maps...") delta_a = hpy.Counts2Delta(counts_a, mask=mask) delta_b = hpy.Counts2Delta(counts_b, mask=mask) delta_sum = 0.5 * (delta_a + delta_b) delta_diff = 0.5 * (delta_a - delta_b) # hp.write_map('fits/delta_'+zbin+'_sum.fits', delta_sum[zbin]) # hp.write_map('fits/delta_'+zbin+'_diff.fits', delta_diff[zbin]) cat_tmp2 = twompz2[(twompz2.ZPHOTO >= args.zmin) & (twompz2.ZPHOTO < args.zmax)] a, b = train_test_split(cat_tmp2, test_size=0.5) counts_a2 = hpy.GetCountsMap(a.RA, a.DEC, nside, coord='G', rad=True) counts_b2 = hpy.GetCountsMap(b.RA, b.DEC, nside, coord='G', rad=True) delta_a2 = hpy.Counts2Delta(counts_a2, mask=mask) delta_b2 = hpy.Counts2Delta(counts_b2, mask=mask) delta_sum2 = 0.5 * (delta_a2 + delta_b2) delta_diff2 = 0.5 * (delta_a2 - delta_b2) print("...done...") # embed() # exit() # XC estimator ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ est_mask = cs.Master(mask, lmin=lmin, lmax=lmax, delta_ell=delta_ell, MASTER=0, pixwin=True) # est_mask2mpz = cs.Master(mask2mpz, lmin=lmin, lmax=lmax, delta_ell=delta_ell, MASTER=0, pixwin=True) print('...extracting gg spectra...') clGS, err_gg = est_mask.get_spectra(delta_sum, analytic_errors=True) clGD = est_mask.get_spectra(delta_diff) gg = clGS - clGD clGS_2mpz, err_gg_2mpz = est_mask.get_spectra(delta_sum2, analytic_errors=True) clGD_2mpz = est_mask.get_spectra(delta_diff2) gg_2mpz = clGS_2mpz - clGD_2mpz # clGS_2mpz, err_gg_2mpz = est_mask2mpz.get_spectra(delta_sum, analytic_errors=True) # clGD_2mpz = est_mask2mpz.get_spectra(delta_diff) # gg_2mpz = clGS_2mpz - clGD_2mpz print('...done...') # Initializing Cosmo class cosmo = Cosmo() cosmo_nl = Cosmo(nonlinear=True) nz, z, _ = hist(twompz.ZPHOTO, 'knuth', normed=1) z = 0.5 * (z[1:] + z[:-1]) plt.close() fig = plt.figure() #figsize=(10, 8)) ax = fig.add_subplot(1, 1, 1) plt.title(r'$%.2f < z < %.2f$' % (args.zmin, args.zmax)) # z, n_z = GetdNdzNorm(nz=1000) # clgg = GetAutoSpectrumMagLim( cosmo, 2.21, 0.053, 1.43, bias=1.24, alpha=1., lmax=1000) # clgg_ph = GetAutoSpectrumMagLim( cosmo_nl, 2.21, 0.053, 1.43, bias=1.24, alpha=1., lmax=1000, sigma_zph=0.03) # clgg_nl = GetAutoSpectrumMagLim( cosmo_nl, 2.21, 0.053, 1.43, bias=1.24, alpha=1., lmax=1000) clgg = GetAutoSpectrum(cosmo, z, nz, [args.zmin, args.zmax], b=1., alpha=1., lmax=500, sigma_zph=0.015, i=0) clgg_nl = GetAutoSpectrum(cosmo_nl, z, nz, [args.zmin, args.zmax], b=1., alpha=1., lmax=500, sigma_zph=0.015, i=0) # clgg = GetAutoSpectrum(cosmo, z, dndz, [0., 0.08, 0.5], b=1.24, alpha=1., lmax=500, sigma_zph=0.015, i=i) # clgg_nl = GetAutoSpectrum(cosmo_nl, z, dndz, [0., 0.08, 0.5], b=1.24, alpha=1., lmax=500, sigma_zph=0.015, i=i) # ax = fig.add_subplot(1,1,i+1) lab = r'2MPZ $%.1f < K_S < %.1f$' % (K_S_min, K_S_max) ax.plot(clgg, color='grey', label=r'$b=1$ $\sigma_z=0.015$') ax.plot(clgg_nl, color='darkgrey', ls='--', label=r'NL $b=1$ $\sigma_z=0.015$') ax.errorbar(est_mask.lb, gg, yerr=err_gg, fmt='o', capsize=0, ms=5, label=lab) ax.errorbar(est_mask.lb + 1, gg_2mpz, yerr=err_gg_2mpz, fmt='x', capsize=0, ms=5) #, label=lab) ax.set_ylabel(r'$C_{\ell}^{gg}$') ax.set_xlabel(r'Multipole $\ell$') ax.legend(loc='best') ax.axhline(ls='--', color='grey') ax.ticklabel_format(style='sci', axis='y', scilimits=(0, 0)) ax.set_xlim([2., 200]) ax.set_yscale('log') ax.set_ylim([1e-5, 1e-3]) plt.tight_layout() # plt.savefig('plots/2MPZ_clgg_dl'+str(args.delta_ell)+'_lmin_'+str(args.lmin)+'_lmax'+str(args.lmax)+'_KS_min_'+str(args.K_S_min)+'_KS_max_'+str(args.K_S_max)+'_nside'+str(args.nside)+'_zmin_'+str(args.zmin)+'_zmax'+str(args.zmax)+'_split.pdf', bbox_inches='tight') plt.show() # plt.close() embed()
def main(args): SetPlotStyle() # Params 'n' stuff fits_planck_mask = '../Data/mask_convergence_planck_2015_512.fits' fits_planck_map = '../Data/convergence_planck_2015_512.fits' twoMPZ_mask = 'fits/2MPZ_mask_tot_256.fits' # N_side = 256 twoMPZ_cat = 'fits/results16_23_12_14_73.fits' nside = args.nside do_plots = False delta_ell = args.delta_ell lmin = args.lmin lmax = args.lmax K_S_min = args.K_S_min K_S_max = args.K_S_max # Load Cat and Mask print("...loading 2MPZ catalogue...") twompz = Load2MPZ(twoMPZ_cat, K_S_min=K_S_min, K_S_max=K_S_max) print("...done...") # Load Planck CMB lensing map 'n' mask print("...loading Planck map/mask...") planck_map, planck_mask = LoadPlanck(fits_planck_map, fits_planck_mask, nside, do_plots=0, filt_plank_lmin=0) print("...done...") print("...reading 2MPZ mask...") mask = hp.read_map(twoMPZ_mask, verbose=False) nside_mask = hp.npix2nside(mask.size) if nside_mask != nside: mask = hp.ud_grade(mask, nside) print("...done...") # Common Planck & WISExSCOS mask mask *= planck_mask # Counts 'n' delta map cat_tmp = twompz[(twompz.ZSPEC >= args.zmin) & (twompz.ZSPEC < args.zmax)] counts = hpy.GetCountsMap(cat_tmp.RA, cat_tmp.DEC, nside, coord='G', rad=True) delta = hpy.Counts2Delta(counts, mask=mask) est = cs.Master(mask, lmin=lmin, lmax=lmax, delta_ell=delta_ell, MASTER=1, pixwin=True) print('...extracting kg spectra...') kg, err_kg = est.get_spectra(planck_map, map2=delta, analytic_errors=True) print("\t=> Detection at rougly %3.2f sigma ") % (np.sum( (kg[0:] / err_kg[0:])**2)**.5) # Initializing Cosmo class cosmo = Cosmo() cosmo_nl = Cosmo(nonlinear=True) nz, z, _ = hist(twompz.ZSPEC[twompz.ZSPEC > 0.], 'knuth', normed=1, histtype='step') z = 0.5 * (z[1:] + z[:-1]) plt.close() fig = plt.figure() #figsize=(10, 8)) ax = fig.add_subplot(1, 1, 1) plt.title(r'$%.2f < z < %.2f$' % (args.zmin, args.zmax)) clkg = GetCrossSpectrum(cosmo, z, nz, [args.zmin, args.zmax], b=1, alpha=1., lmax=500, sigma_zph=0.) clkg_nl = GetCrossSpectrum(cosmo_nl, z, nz, [args.zmin, args.zmax], b=1, alpha=1., lmax=500, sigma_zph=0.) # z, n_z = GetdNdzNorm(nz=1000) # clkg = GetCrossSpectrum(cosmo, z, n_z, [bins_edges[zbin][0],0.3], b=1.24, alpha=1., lmax=1000) # # clkg = GetCrossSpectrum(cosmo, z, n_z, [bins_edges[zbin][0],bins_edges[zbin][1]], b=1, alpha=1.24, lmax=1000) # clkg_nl = GetCrossSpectrum(cosmo_nl, z, n_z, [bins_edges[zbin][0],0.5], b=1.24, alpha=1., lmax=1000) # # clkg_nl = GetCrossSpectrum(cosmo_nl, z, n_z, [bins_edges[zbin][0],bins_edges[zbin][1]], b=1.24, alpha=1., lmax=1000) # # clgg_pherrz = GetAutoSpectrum(cosmo, z, dndz, [bins_edges[zbin][0],bins_edges[zbin][1]], b=1.24, alpha=1., lmax=1000, sigma_zph=0.03) lab = r'2MPZ $%.1f < K_S < %.1f$' % (K_S_min, K_S_max) ax.plot(clkg, color='grey', label=r'$b=1$') ax.plot(clkg_nl, color='darkgrey', ls='--', label=r'NL $b=1$') ax.errorbar(est.lb, kg, yerr=err_kg, fmt='o', capsize=0, ms=5, label=lab) ax.set_ylabel(r'$C_{\ell}^{\kappa g}$') ax.set_xlabel(r'Multipole $\ell$') ax.legend(loc='best') ax.axhline(ls='--', color='grey') ax.ticklabel_format(style='sci', axis='y', scilimits=(0, 0)) ax.set_xlim([2., 200]) ax.set_yscale('log') ax.set_ylim([1e-8, 1e-5]) plt.tight_layout() plt.savefig('plots/2MPZ_Planck_clkg_dl' + str(args.delta_ell) + '_lmin_' + str(args.lmin) + '_lmax' + str(args.lmax) + '_KS_min_' + str(args.K_S_min) + '_KS_max_' + str(args.K_S_max) + '_nside' + str(args.nside) + '_zmin_' + str(args.zmin) + '_zmax' + str(args.zmax) + '_split_spec.pdf', bbox_inches='tight') # plt.show() # plt.close() # embed() np.savetxt( 'spectra/2MPZ_Planck2015_clkg_dl' + str(args.delta_ell) + '_lmin_' + str(args.lmin) + '_lmax' + str(args.lmax) + '_KS_min_' + str(args.K_S_min) + '_KS_max_' + str(args.K_S_max) + '_nside' + str(args.nside) + '_zmin_' + str(args.zmin) + '_zmax' + str(args.zmax) + '_split_spec.dat', np.c_[est.lb, kg, err_kg])
def main(args): SetPlotStyle() # Params 'n' stuff fits_planck_mask = '../Data/mask_convergence_planck_2015_512.fits' fits_planck_map = '../Data/convergence_planck_2015_512.fits' twoMPZ_mask = 'fits/2MPZ_mask_tot_256.fits' # N_side = 256 twoMPZ_cat = 'fits/results16_23_12_14_73.fits' nside = args.nside do_plots = False delta_ell = args.delta_ell lmin = args.lmin lmax = args.lmax K_S_min = args.K_S_min K_S_max = args.K_S_max # lbmin = 2 # lbmax = 10 # Load Cat and Mask print("...loading 2MPZ catalogue...") twompz = Load2MPZ(twoMPZ_cat, K_S_min=K_S_min, K_S_max=K_S_max) print("...done...") # Load Planck CMB lensing map 'n' mask print("...loading Planck map/mask...") planck_map, planck_mask = LoadPlanck(fits_planck_map, fits_planck_mask, nside, do_plots=0, filt_plank_lmin=0) print("...done...") print("...reading 2MPZ mask...") mask = hp.read_map(twoMPZ_mask, verbose=False) nside_mask = hp.npix2nside(mask.size) if nside_mask != nside: mask = hp.ud_grade(mask, nside) print("...done...") # Common Planck & WISExSCOS mask mask *= planck_mask # embed() # Counts n overdesnity map cat_tmp = twompz[(twompz.ZPHOTO >= args.zmin) & (twompz.ZPHOTO < args.zmax)] a, b = train_test_split(cat_tmp, test_size=0.5) counts_a = hpy.GetCountsMap(a.RA, a.DEC, nside, coord='G', rad=True) counts_b = hpy.GetCountsMap(b.RA, b.DEC, nside, coord='G', rad=True) # hp.write_map('fits/counts_'+zbin+'_sum.fits', counts_sum[zbin]) # hp.write_map('fits/counts_'+zbin+'_diff.fits', counts_diff[zbin]) print("\tNumber of sources in bin [%.2f,%.2f) is %d" % (args.zmin, args.zmax, np.sum((counts_a + counts_b) * mask))) print("...converting to overdensity maps...") delta_a = hpy.Counts2Delta(counts_a, mask=mask) delta_b = hpy.Counts2Delta(counts_b, mask=mask) delta_sum = 0.5 * (delta_a + delta_b) delta_diff = 0.5 * (delta_a - delta_b) # hp.write_map('fits/delta_'+zbin+'_sum.fits', delta_sum[zbin]) # hp.write_map('fits/delta_'+zbin+'_diff.fits', delta_diff[zbin]) print("...done...") # embed() # exit() # XC estimator ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ est = cs.Master(mask, lmin=lmin, lmax=lmax, delta_ell=delta_ell, MASTER=1, pixwin=True) print('...extracting gg spectra...') clGS, err_gg = est.get_spectra(delta_sum, analytic_errors=True) clGD = est.get_spectra(delta_diff) gg = clGS - clGD counts_ = counts_a + counts_b delta_ = hpy.Counts2Delta(counts_, mask=mask) gg_, err_gg_ = est.get_spectra(delta_, nl=GetNlgg(counts_, mask=mask), pseudo=0, analytic_errors=True) print("\t=> Detection at rougly %.2f sigma ") % (np.sum( (gg[0:] / err_gg[0:])**2)**.5) print("\t=> Detection at rougly %.2f sigma ") % (np.sum( (gg_[0:] / err_gg_[0:])**2)**.5) print('...done...') # Initializing Cosmo class cosmo = Cosmo() cosmo_nl = Cosmo(nonlinear=True) nz, z, _ = hist(twompz.ZPHOTO, 'knuth', normed=1) z = 0.5 * (z[1:] + z[:-1]) plt.close() fig = plt.figure() #figsize=(10, 8)) ax = fig.add_subplot(1, 1, 1) plt.title(r'$%.2f < z < %.2f$' % (args.zmin, args.zmax)) # z, n_z = GetdNdzNorm(nz=1000) # clgg = GetAutoSpectrumMagLim( cosmo, 2.21, 0.053, 1.43, bias=1.24, alpha=1., lmax=1000) # clgg_ph = GetAutoSpectrumMagLim( cosmo_nl, 2.21, 0.053, 1.43, bias=1.24, alpha=1., lmax=1000, sigma_zph=0.03) # clgg_nl = GetAutoSpectrumMagLim( cosmo_nl, 2.21, 0.053, 1.43, bias=1.24, alpha=1., lmax=1000) clgg = GetAutoSpectrum(cosmo, z, nz, [args.zmin, args.zmax], b=1., alpha=1., lmax=500, sigma_zph=0.015, i=0) clgg_nl = GetAutoSpectrum(cosmo_nl, z, nz, [args.zmin, args.zmax], b=1., alpha=1., lmax=500, sigma_zph=0.015, i=0) # clgg = GetAutoSpectrum(cosmo, z, dndz, [0., 0.08, 0.5], b=1.24, alpha=1., lmax=500, sigma_zph=0.015, i=i) # clgg_nl = GetAutoSpectrum(cosmo_nl, z, dndz, [0., 0.08, 0.5], b=1.24, alpha=1., lmax=500, sigma_zph=0.015, i=i) # ax = fig.add_subplot(1,1,i+1) lab = r'2MPZ $%.1f < K_S < %.1f$' % (K_S_min, K_S_max) ax.plot(clgg, color='grey', label=r'$b=1$ $\sigma_z=0.015$') ax.plot(clgg_nl, color='darkgrey', ls='--', label=r'NL $b=1$ $\sigma_z=0.015$') ax.errorbar(est.lb, gg, yerr=err_gg, fmt='o', capsize=0, ms=5, label=lab) # ax.errorbar(est.lb+1, gg_[zbin], yerr=err_gg_[zbin], fmt='x', capsize=0, ms=5)#, label=lab) ax.set_ylabel(r'$C_{\ell}^{gg}$') ax.set_xlabel(r'Multipole $\ell$') ax.legend(loc='best') ax.axhline(ls='--', color='grey') ax.ticklabel_format(style='sci', axis='y', scilimits=(0, 0)) ax.set_xlim([2., 200]) ax.set_yscale('log') ax.set_ylim([1e-5, 1e-3]) plt.tight_layout() plt.savefig('plots/2MPZ_clgg_dl' + str(args.delta_ell) + '_lmin_' + str(args.lmin) + '_lmax' + str(args.lmax) + '_KS_min_' + str(args.K_S_min) + '_KS_max_' + str(args.K_S_max) + '_nside' + str(args.nside) + '_zmin_' + str(args.zmin) + '_zmax' + str(args.zmax) + '_split.pdf', bbox_inches='tight') # plt.show() # plt.close() # embed() np.savetxt( 'spectra/2MPZ_clgg_dl' + str(args.delta_ell) + '_lmin_' + str(args.lmin) + '_lmax' + str(args.lmax) + '_KS_min_' + str(args.K_S_min) + '_KS_max_' + str(args.K_S_max) + '_nside' + str(args.nside) + '_zmin_' + str(args.zmin) + '_zmax' + str(args.zmax) + '_split.dat', np.c_[est.lb, gg, err_gg])