print('Accuracy of S_TWSVM %.3f' % (100 * np.mean(y_S_TWSVM == y_test))) ###Cross validation score of S_TWSVM #from sklearn.model_selection import cross_val_score scores = cross_val_score(estimator=clf3, X=AB_train_mms, y=y_train, cv=10, n_jobs=1) #print('CV accuracy scores of S_TWSVM: %s' %scores) print('CV accuracy of S_TWSVM: %.3f +/- %.3f' % (np.mean(scores), np.std(scores))) # TWSVM: best params of TWSVM {'c': 1.0, 'c_': 1.0} from TWSVM_class import TWSVM start_time = time.time() clf4 = TWSVM(c=1, c_=1) clf4.fit(AB_train_mms, y_train) end_time = time.time() print('total run time of TWSVM: %f ' % ((end_time - start_time))) y_TWSVM = clf4.predict(AB_test_mms) print('Accuracy of TWSVM %.3f ' % (100 * np.mean(y_TWSVM == y_test))) ###Cross validation score of TWSVM #from sklearn.model_selection import cross_val_score scores = cross_val_score(estimator=clf4, X=AB_train_mms, y=y_train, cv=10, n_jobs=1) #print('CV accuracy scores of TWSVM: %s' %scores) print('CV accuracy of TWSVM: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))
print('Accuracy of S_TWSVM %.3f' % (100 * np.mean(y_S_TWSVM == y_test))) ###Cross validation score of S_TWSVM #from sklearn.model_selection import cross_val_score scores = cross_val_score(estimator=clf3, X=AB_train, y=y_train, cv=10, n_jobs=1) #print('CV accuracy scores of S_TWSVM: %s' %scores) print('CV accuracy of S_TWSVM: %.3f +/- %.3f' % (np.mean(scores), np.std(scores))) # TWSVM best params of TWSVM {'c': 0.1, 'c_': 0.1} from TWSVM_class import TWSVM start_time = time.time() clf4 = TWSVM(c=0.1, c_=0.1) clf4.fit(AB_train, y_train) end_time = time.time() print('total run time of TWSVM: %f ' % ((end_time - start_time))) y_TWSVM = clf4.predict(AB_test) print('Accuracy of TWSVM %.3f ' % (100 * np.mean(y_TWSVM == y_test))) ###Cross validation score of TWSVM #from sklearn.model_selection import cross_val_score scores = cross_val_score(estimator=clf4, X=AB_train, y=y_train, cv=10, n_jobs=1) #print('CV accuracy scores of TWSVM: %s' %scores) print('CV accuracy of TWSVM: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))