示例#1
0
    testPath = _basePath + "001_test_tobe.csv"

    # 1. read data
    dr = DataReader()
    dr.readInCSV(path, "train")
    newX, newY = dr._trainDataFrame, dr._ansDataFrame
    if doTestFlag == True:
        dr.readInCSV(testPath, "test")
        newX = dr._testDataFrame
        #newX = pd.DataFrame(newX[newX.columns[0]])
        print newX
    # 2. stratify 60 % data and train location only
#     newX, newY = stratifyData(dr._trainDataFrame, dr._ansDataFrame, 0.4)

# 3. get all best model from newX
#     fab = ModelFactory()
#     fab._gridSearchFlag = True
#     fab._n_iter_search = 500
#     fab._expInfo = "001_location_only"
#     fab.getAllModels(newX, newY)

# 4. test all data, output 3 ans as features
    modelPath = _basePath + "(Xgboost)_(2016-02-03_18_39_14).model"
    tmpOutPath = _basePath + "001_submission_2.csv"
    tmpClf = loadModel(modelPath)
    log(tmpClf.predict_proba(newX))
    #outDf = pd.concat([newX, pd.DataFrame(tmpClf.predict_proba(newX))], axis=1)
    outDf = pd.DataFrame(tmpClf.predict_proba(newX))
    outDf.to_csv(tmpOutPath, sep=',', encoding='utf-8')
    musicAlarm()
示例#2
0
        
#      4. test all data, output 3 ans as features
#     D:\Kaggle\Telstra\004_one_hot_resource_type\(Xgboost)_(2016-02-06_11_14_31).model
#     D:\Kaggle\Telstra\004_one_hot_resource_type\(Random_Forest)_(2016-02-06_11_24_09).model
#     D:\Kaggle\Telstra\004_one_hot_resource_type\(Extra_Trees)_(2016-02-06_11_30_52).model
#     D:\Kaggle\Telstra\004_one_hot_resource_type\(K_NN)_(2016-02-06_11_40_10).model

    modelFolder = _basePath + "models" + Config.osSep + "stacked" + Config.osSep
    
    clfNameList = []
    clfNameList.append("Extra_Trees")
    clfNameList.append("K_NN")
    clfNameList.append("Random_Forest")
    clfNameList.append("Xgboost")
    clfNameList.append("Logistic_Regression")
    
    testCsv = _basePath + "010_train_tobe.csv"
    dr = DataReader()
    newX, testY = dr.cvtPathListToDfList(testCsv, "train")
    
    for curModel in clfNameList:
        modelPath =  modelFolder + str(getMatchNameModelPath(modelFolder, curModel))
        tmpOutPath = _basePath + expNo + "_blender" + curModel + "_train.csv"
        tmpClf = loadModel( modelPath)
        log(tmpClf.predict_proba(newX))
        #outDf = pd.concat([newX, pd.DataFrame(tmpClf.predict_proba(newX))], axis=1)
        outDf = pd.DataFrame(tmpClf.predict_proba(newX))
        outDf.to_csv(tmpOutPath, sep=',', encoding='utf-8')
        #musicAlarm()