示例#1
0
def unified_k3_m3(tensor_trans, tensor_begin):
    #conteract first 3 dim tensor_trans[9,10,11] tensor_begin[6,7,8]
    #join tensor_trans[3,4,5,6,7,8] tensor_begin[0,1,2,3,4,5]
    #result= join[]+tensor_trans[0,1,2]
    result = np.empty(tensor_begin.shape)
    shape = tensor_trans.shape
    for i in range(shape[0]):
        for j in range(shape[1]):
            for k in range(shape[2]):
                for m in range(shape[3]):
                    for n in range(shape[4]):
                        for x in range(shape[5]):
                            for q in range(shape[6]):
                                for w in range(shape[7]):
                                    for e in range(shape[8]):
                                        result[
                                            i, j, k, m, n, x, q, w,
                                            e] = np.sum(
                                                tensor_trans.data[i, j, k, m,
                                                                  n, x, q, w,
                                                                  e:, :, :] *
                                                tensor_begin.data[m, n, x, q,
                                                                  w,
                                                                  e, :, :, :])

    return tensor.tensor(result)
示例#2
0
def ctor(verbose):
    
    dat = numpy.arange(24).reshape([2,3,4]);
    
    t = tensor.tensor(dat);
    print (t);
    if (verbose):
        obj = tenmat.tenmat(t, [1,0]);
        print (obj);
        print (obj.copy());
        
    dat = dat.reshape([4,6]);
    t = tensor.tensor(dat);
    if (verbose):
        obj = tenmat.tenmat(t, [0], [1], [4,6]);
        print (obj);
示例#3
0
def totensorTests(verbose):
    
    dat = numpy.arange(24).reshape([2,3,4]);
    t = tensor.tensor(dat);
    obj = tenmat.tenmat(t,[2,1]);
    if(verbose):
        print (obj);
        print (obj.totensor());
示例#4
0
def ctorTests(verbose):
    arr = numpy.arange(24).reshape([2, 3, 4])
    A = numpy.array([[1, 2], [3, 4], [5, 6]])
    B = numpy.array([[1, 2, 3], [4, 5, 6]])
    C = numpy.array([[1, 2, 3, 4]])

    obj = ttensor.ttensor(tensor.tensor(arr), [A, B, C])
    print(obj)
    print(obj.shape)
示例#5
0
def tosptensor(verbose):

    dat = numpy.array(
        [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, 13, 14, 15, 16, 17, 18])
    siz = numpy.array([3, 3, 2])

    obj = tensor.tensor(dat, siz)
    if (verbose == 1):
        print(obj)
        print(obj.tosptensor())
示例#6
0
def test2():
#    A = numpy.array([[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]);
#    A = numpy.arange(12).reshape([4,3]) + 1;
    A = numpy.arange(1000).reshape([10,10,10])+1;
    (ans1, ans2) = DTA.DTA(tensor.tensor(A), [2,2,2]);
    print (ans1);
    for i in range(0, len(ans2)):
        print ("{0} th array\n {1}".format(i, ans2[i]));
        
    print (ans1.totensor());
示例#7
0
def ttmTest(verbose):
    dat = numpy.arange(24).reshape([2, 3, 4])
    siz = numpy.array([2, 3, 4])
    obj = tensor.tensor(dat, siz)

    A = numpy.arange(18).reshape([6, 3])

    print(obj.ttm(A, 1))
    B = numpy.arange(12).reshape([3, 4])
    print(obj.ttm([A, B], [1, 2]))
    print("a")
    print(obj.ttm([A.transpose(), B.transpose()], [1, 2], 't'))
示例#8
0
def mathlogicops(verbose):
    dat = numpy.arange(24).reshape([2, 3, 4])
    siz = numpy.array([2, 3, 4])
    obj = tensor.tensor(dat, siz)

    print(obj + 100)
    print(obj - 100)
    print(obj + (obj + 10))
    print(obj * 1.5)
    print(obj < 10)
    print(obj > 10)
    print(obj == 10)
    print(obj == obj)
示例#9
0
def ctor(verbose):
    dat = numpy.arange(24)
    dat[10] = 100
    dat[16] = -1
    siz = numpy.array([4, 3, 2])

    obj = tensor.tensor(dat, siz)
    if (verbose == 1):
        print(obj)
        print(obj.ndims())

    obj2 = tensor.tensor(dat.reshape([2, 3, 4]), siz)
    if (verbose == 1):
        print(obj)
        print(obj.shape)

    dat = numpy.array(
        [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, 13, 14, 15, 16, 17, 18])
    obj2 = tensor.tensor(dat)
    if (verbose == 1):
        print(obj2)
        print(obj2.shape)
示例#10
0
def permutetest(verbose):

    dat = numpy.arange(24).reshape([2, 3, 4])
    siz = numpy.array([2, 3, 4])

    obj = tensor.tensor(dat, siz)
    if (verbose == 1):
        print(obj)
        print("permute by {0}".format("[2,0,1]"))
        print(obj.permute([2, 0, 1]))
        print("permute by {0}".format("[1,2,0]"))
        print(obj.permute([1, 2, 0]))
        print("ipermuted by {0}".format("[1,2,0]"))
        print(obj.ipermute([1, 2, 0]))
        print(obj.permute([1, 2, 0]).ipermute([1, 2, 0]))
示例#11
0
def test1():
    A = ttensor.ttensor(tensor.tenrands([2,3,4]),
                    [numpy.random.random([10,2]),
                    numpy.random.random([30,3]),
                    numpy.random.random([40,4])]).totensor();

    [a,b] = DTA.DTA(A, [1,2,3]);
    #print a;
    #print b;

    Core = numpy.arange(24).reshape([2,3,4]);
    #Core = numpy.array([[1,3,5],[2,4,6]] , [[7,9,11],[8,10,12]])
    u1 = numpy.array([[1,2],[3,4]]);
    u2 = numpy.array([[0,1,0],[1,0,1],[1,1,1]]);
    u3 = numpy.array([[1,1,1,1],[1,2,3,4],[1,1,1,1]]);
    tt = ttensor.ttensor(tensor.tensor(Core), [u1,u2,u3]);
    
    print (tt);
    [a,b] = DTA.DTA(tt.totensor(), [1,2,3]);
    print (a);
    print (a.totensor());
    print (b);
示例#12
0
    return np.linalg.norm(tensor_a.data - tensor_b.data)


def pow_approch(tensor_trans, tensor_begin, error):
    resultx = unified_k3_m3(tensor_trans, tensor_begin)
    #print(resultx)
    resulty = unified_k3_m3(tensor_trans, resultx)
    i = 0
    while (checkError(resultx, resulty) > error and i < MAX_TIMES):
        resultx = resulty
        resulty = unified_k3_m3(tensor_trans, resulty)

    return resulty


if __name__ == '__main__':
    a = np.array(range(13824 * 2 * 3 * 4), dtype=np.float64).reshape(
        [2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4])
    b = np.array(range(576 * 24),
                 dtype=np.float64).reshape([2, 3, 4, 2, 3, 4, 2, 3, 4])
    tensor_trans = tensor.tensor(a)
    tensor_begin = tensor.tensor(b)
    #print(tensor_begin)
    print('tensor_tran')
    print(tensor_trans.data[0, 0, 0, 0, 0, 0, 0, 0, 0, :, :, :])
    print('tensor_begin')
    print(tensor_begin.data[0, 0, 0, 0, 0, 0, :, :, :])
    result = unified_k3_m3(tensor_trans, tensor_begin)
    print(result.data[0, 0, 0, 0, 0, 0, 0, 0, 0])
#error=10