def _load_state_vars(state, gtruth_df, median_win=None):
    pred_df = gtruth_df.copy()
    # Define dataloader
    many_hot_encoder = ManyHotEncoder.load_state_dict(state["many_hot_encoder"])
    scaler = _load_scaler(state)
    crnn = _load_crnn(state)
    # Note, need to unsqueeze axis 1
    transforms_valid = get_transforms(cfg.max_frames, scaler=scaler, add_axis=1)

    # Note, no dataloader here
    strong_dataload = DataLoadDf(pred_df, many_hot_encoder.encode_strong_df, transforms_valid, return_indexes=True)

    pooling_time_ratio = state["pooling_time_ratio"]
    many_hot_encoder = ManyHotEncoder.load_state_dict(state["many_hot_encoder"])
    if median_win is None:
        median_win = state["median_window"]
    return {
        "model": crnn,
        "dataload": strong_dataload,
        "pooling_time_ratio": pooling_time_ratio,
        "many_hot_encoder": many_hot_encoder,
        "median_window": median_win
    }
示例#2
0
            if save_best_cb.apply(valid_synth_f1):
                model_fname = os.path.join(saved_model_dir, "baseline_best")
                torch.save(state, model_fname)
            results.loc[epoch, "global_valid"] = valid_synth_f1
        results.loc[epoch, "loss"] = loss_value.item()
        results.loc[epoch, "valid_synth_f1"] = valid_synth_f1

        if cfg.early_stopping:
            if early_stopping_call.apply(valid_synth_f1):
                logger.warn("EARLY STOPPING")
                break

    if cfg.save_best:
        model_fname = os.path.join(saved_model_dir, "baseline_best")
        state = torch.load(model_fname)
        crnn = _load_crnn(state)
        logger.info(f"testing model: {model_fname}, epoch: {state['epoch']}")
    else:
        logger.info("testing model of last epoch: {}".format(cfg.n_epoch))
    results_df = pd.DataFrame(results).to_csv(os.path.join(
        saved_pred_dir, "results.tsv"),
                                              sep="\t",
                                              index=False,
                                              float_format="%.4f")
    # ##############
    # Validation
    # ##############
    crnn.eval()
    transforms_valid = get_transforms(cfg.max_frames, scaler, add_axis_conv)
    predicitons_fname = os.path.join(saved_pred_dir, "baseline_validation.tsv")