def load_files_and_tracks(path_name): connect_to_db() print("Directory: ", end="") path = str(input()) try: files = get_files_in_path(path_name=path_name) for f in files: try: file = File() print('Processing file:{}'.format(f)) file.parse_filename(filename=f) file.add_raw_file(filename=f) file.save() tracks = file.load_local_file(filename=f) for track in tracks: track.save() except AssertionError: print("Unable to load file:{}".format(f)) finally: print("File loaded") except FileNotFoundError: print("Invalid directory") disconnect_to_db()
from Networks.diffusion_coefficient_network import DiffusionCoefficientNetworkModel from Tools.db_connection import disconnect_to_db, connect_to_db import matplotlib.pyplot as plt import numpy as np if __name__ == "__main__": connect_to_db() lower_limit = 15 upper_limit = 1500 nets = DiffusionCoefficientNetworkModel.objects(track_length__in=range( lower_limit, upper_limit), hiperparams_opt=False) count = 0 for net in nets: print(net.id) epochs = np.arange(1, len(net.history['mse']) + 1) plt.plot(epochs, net.history['mse']) if net.history['mse'][-1] >= 0.006: count += 1 print('Must be retrained:{}'.format(count)) plt.xlabel('Epochs') plt.ylabel('MSE') plt.show() for net in nets: if net.history['mse'][-1] >= 0.006: net.net_params['lr'] = 6e-8 # net.net_params['lr'] = 5e-7 net.train_network()