示例#1
0
def val(data_loader, net, criterion):
    losses = tools.AverageMeter()
    acc = tools.AverageMeter()

    net.eval()
    loop = len(data_loader)
    for i, (images, labels) in enumerate(data_loader):
        images = Variable(images.view(-1, 14951)).cuda()
        labels = Variable(labels).cuda()



        outputs = net(images)
        loss = criterion(outputs, labels)

        prec1, prec1 = tools.Accuracy(outputs, labels, topk=(1, 1))
        losses.update(loss.data[0], images.size(0))
        acc.update(prec1[0], images.size(0))


        #if (i + 1) % 10 == 0:
        print('Step [%d], Loss: %.4f'
                  % (i + 1, loss.data[0]))
        print('Accuracy : ', (prec1.cpu().data.numpy()[0]))
        print('Accuracy (All): ', acc.avg.cpu().data.numpy()[0])
        print('Losses (All): ', losses.avg)
        print()

    return acc.avg
示例#2
0
def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = tools.AverageMeter()
    losses = tools.AverageMeter()
    acc = tools.AverageMeter()    
    end = time.time()
    
    for i, (img, label, og_label, key, linenumber) in enumerate(train_loader):


        target = label.cuda(async=True)
        img = Variable(img).cuda()
        label = Variable(label).cuda()
        output = model(img)
        loss = criterion(output,label)
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure accuracy and record loss
        prec1, prec1 = tools.Accuracy(output.data, target, topk=(1, 1))
        losses.update(loss.data[0], img.size(0))
        acc.update(prec1[0], img.size(0))        
        
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()        
        if i % 50 == 0:
            print('\tEpoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(
                      epoch, i, len(train_loader), batch_time=batch_time, loss=losses, acc=acc))
    return acc.avg     
示例#3
0
def val(data_loader, net, criterion, scheduler, epoch):
    net.train(False)
    losses = tools.AverageMeter()
    acc = tools.AverageMeter()

    net.eval()
    loop = len(data_loader)
    for i, (images, labels) in enumerate(data_loader):
        #images, labels = data_loader[i]
        # Convert torch tensor to Variable
        images = Variable(images.view(-1, 14951)).cuda()
        labels = Variable(labels).cuda()

        outputs = net(images)
        loss = criterion(outputs, labels)

        prec1, prec1 = tools.Accuracy(outputs, labels, topk=(1, 1))
        losses.update(loss.data[0], images.size(0))
        acc.update(prec1[0], images.size(0))

        if (i + 1) % 100 == 0:
            print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' %
                  (epoch + 1, num_epochs, i + 1,
                   len(val_dataset) // batch_size, loss.data[0]))
            print('Accuracy : ', (prec1.cpu().data.numpy()[0]))
            print('Accuracy (All): ', acc.avg.cpu().data.numpy()[0])
            print('Losses (All): ', losses.avg)
            print()
    return acc.avg
示例#4
0
def train(data_loader, net, criterion, optimizer, scheduler, epoch):
    losses = tools.AverageMeter()
    acc = tools.AverageMeter()
    scheduler.step()
    net.train(True)
    loop = len(data_loader)

    for i, (images, labels) in enumerate(data_loader):

        # Convert torch tensor to Variable
        images = Variable(images.view(-1, 14951)).cuda()
        labels = Variable(labels).cuda()

        # Forward + Backward + Optimize
        optimizer.zero_grad()  # zero the gradient buffer
        outputs = net(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        prec1, prec1 = tools.Accuracy(outputs, labels, topk=(1, 1))

        losses.update(loss.data[0], images.size(0))
        acc.update(prec1[0], images.size(0))

        if (i + 1) % 100 == 0:
            print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' %
                  (epoch + 1, num_epochs, i + 1,
                   len(train_dataset) // batch_size, loss.data[0]))
            print('Accuracy : ', (prec1.cpu().data.numpy()[0]))
            print('Accuracy (All): ', acc.avg.cpu().data.numpy()[0])
            print('Losses (All): ', losses.avg)
            print()
示例#5
0
def val(val_loader, model, criterion):
    batch_time = tools.AverageMeter()
    losses = tools.AverageMeter()
    acc = tools.AverageMeter()    
    end = time.time()
    
    
    model.eval()
    for i, (img, label) in enumerate(val_loader):
    

        target = label.cuda(async=True)
        img = Variable(img).cuda()
        label = Variable(label).cuda()

        
        
        output = model(img)
        loss = criterion(output,label)
        
        
        
        # measure accuracy and record loss
        prec1, prec1 = tools.Accuracy(output.data, target, topk=(1, 1))
        losses.update(loss.data[0], img.size(0))
        acc.update(prec1[0], img.size(0))
        
        
        
        
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()  
        
        
        if i % 100 == 0:
            print('\tVal: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(
                      i, len(val_loader), batch_time=batch_time, loss=losses, acc=acc))
            
            
    print(' * Accuracy {acc.avg:.3f}'.format(acc=acc))

    return acc.avg
示例#6
0
def test(data_loader, net, criterion):
	losses = tools.AverageMeter()
	acc = tools.AverageMeter()
	net.eval()
	loop = len(data_loader)