def main(file_paths): # unpack file paths: videos_table_file_path = file_paths['videos_table'] manually_added_data_table_file_path = file_paths[ 'manually_added_data_table'] videos_query = file_paths['populate_videos'] manually_added_data_table_query = file_paths[ 'populate_manually_added_data'] # Step 1, initialize script: tools.InitializeScript(os.path.basename(__file__), **tools.kwargs) # Step 2, read tables: videos_table = tools.ReadDataFromFile(videos_table_file_path) manually_added_data_table = tools.ReadDataFromFile( manually_added_data_table_file_path) # Step 3, prep tables for entry: videos_table = funcs.PrepVideosTable(videos_table) manually_added_data_table = funcs.PrepManuallyAddedDataTable( manually_added_data_table) # Step 4, populate postgres: funcs.PopulateVideosTable(videos_table, videos_query) funcs.PopulateManuallyAddedDataTable(manually_added_data_table, manually_added_data_table_query)
def main(file_paths): # Unpack files: reports_table = file_paths['reports_table'] descriptors_file = file_paths['descriptors'] export_file = file_paths['reports_table_export'] populate_query = file_paths['populate_query'] # Step 1, initialize script: tools.InitializeScript(os.path.basename(__file__)) # Step 2, read reports files: reports = tools.ReadDataFromFile(reports_table) # Step 3, parse reports: reports = funcs.ParseReports(reports) # Step 4, read descriptors: descriptors = funcs.ReadDescriptors(descriptors_file) # Step 5, get dictionary of normal descriptors: normal_features = funcs.GetDictionaryOfNormalDescriptors(descriptors) # Step 6, build reports table: reports_table = funcs.BuildReportTable(normal_features, reports, descriptors) # Step 7, write reports table to database: tools.ExportDataToFile(reports_table, export_file) funcs.ExportReportsTable(reports_table, populate_query) return reports, descriptors, reports_table
def main(file_paths): # Unpack files: insert_report_id_column_query = file_paths['insert_report_id_column_query'] # Step 1, initialize script: tools.InitializeScript(os.path.basename(__file__)) # Step 2, find report ids for each video: ids_table = funcs.FindReportIDs() # Step 3, add report id column to videos table: funcs.AddReportIDsToVidoes(ids_table, insert_report_id_column_query)
def main(file_paths): # unpack file paths: videos_table_file_path = file_paths['videos_table'] # Step 1, initialize script: tools.InitializeScript(os.path.basename(__file__), **tools.kwargs) # Step 2, get root paths: root_paths = funcs.GetRootFolders() # Step 3, get list of folders: videos_table = funcs.GetFilePaths(root_paths) # Step 4, rename jpegs with leading zeros: funcs.RenameJpegs(videos_table) # Step 5, parse data: videos_table = funcs.ParseVideosTable(videos_table) # Step 6, export data: tools.ExportDataToFile(videos_table, videos_table_file_path)
def main(file_paths): # unpack file paths: videos_table_file_path = file_paths['videos_table'] manually_added_data_table_file_path = file_paths[ 'manually_added_data_table'] # Step 1, initialize script: tools.InitializeScript(os.path.basename(__file__), **tools.kwargs) # Step 2, read vidoes table: videos_table = tools.ReadDataFromFile(videos_table_file_path) # Step 3, create manually added data table: manually_added_data_table = funcs.BuildManuallyAddedDataTable(videos_table) # Step 4, build webms: funcs.BuildWebmFiles(manually_added_data_table) # Step 5, export data: tools.ExportDataToFile(manually_added_data_table, manually_added_data_table_file_path)
def QueryDatabase(database_dictionary, database_query, verbose=False, start=time()): ''' Accepts database dictionary, SQL query string, returns query results ''' # intialize variables: result = None try: # establish connection: connection = psycopg2.connect( host = database_dictionary['host'], database = database_dictionary['database'], user = database_dictionary['user'], password = database_dictionary['password'], ) # build cursor: cursor = connection.cursor() # execute query: cursor.execute(database_query) # retreive result (select queries only): if tools.QueryType(database_query) == 'SELECT': result = sqlio.read_sql_query(database_query, connection) # commit changes: connection.commit() # close cursor: cursor.close() except Exception as error: # handle exceptions: raise('[ERROR] in [QueryDatabase] with query [%s]: Database error: %s' %(database_query, error)) finally: # close connection: if connection is not None: connection.close() if verbose: print('[@ %7.2f s] [QueryDatabase]: Queried database' %(time()-start)) return result
def main(): # Directory tree: file_paths = { 'reports_table': '/labelling_app/patient_descriptors.csv', 'descriptors': '/internal_drive/Imported Data/Descriptors.xlsx', 'reports_table_export': '/sandbox/dsokol/echo_production_pipeline/Database/Tables/reports_table.pkl', 'populate_query': '/sandbox/dsokol/echo_production_pipeline/Database/EchoData/Queries/DataManagementQueries/populate_reports_table.sql', 'insert_report_id_column_query': '/sandbox/dsokol/echo_production_pipeline/Database/EchoData/Queries/DataManagementQueries/insert_report_id_columns.sql', } # Step 1, initialize script: tools.InitializeScript(os.path.basename(__file__)) # Step 2, reports reader pipeline: #ReportsReaderPipeline.main(file_paths) # Step 3, videos table reports column pipeline: VideosTableReportsColumnPipeline.main(file_paths)