def main(args):
    init_logger()
    set_seeds()
    tokenizer = load_tokenizer(args)

    if args.do_train:
        if args.model_4:
            first =TrainerFirst(args, tokenizer)
            first.train()
            second = SecondClassifier(args, tokenizer)
            second.classifier()
            third = Trainermmd(args, tokenizer)
            third.train()
        elif args.new_model_4:
            first =FirstTrainer(args, tokenizer)
            first.train()
            second = SecondClassifier_n(args, tokenizer)
            second.classifier()
            third = Trainermmd_n(args, tokenizer)
            third.train()
        else:
            trainer = Trainer(args, tokenizer)
            trainer.train()
    elif args.do_test:
        if args.model_4 or args.new_model_4:
            tester = Predictor(args, tokenizer)
            tester.predict()
        else:    
            tester = Tester(args, tokenizer)
            tester.test()
    elif args.do_interactive:
        interactive_predict(args)
示例#2
0
 def getListOfDotCoords(self, imagePath, dotImagesPath):
     t = Trainer()
     e = Extractor()
     v = Vectors()
     imageTemplateList = t.createListOfImageTemplates("dot", dotImagesPath)
     pts = sorted(e.getMatchingPoints(imagePath, imageTemplateList, 0.9)[0])
     for pt in pts:
         for pt2 in pts[pts.index(pt):]:
             if pt == pt2:
                 continue
             else:
                 if v.distance(pt, pt2) < 10:
                     pts.remove(pt2)
     return pts
	def __init__(self, videoPaths, objectNames):
		#self.imagePath = imagePath
		self.objectNames = objectNames
		e = Extractor()
		t = Trainer()
		objectIndex = 0
		numTimesObjectVidDissected = {}
		for path in videoPaths:
			if objectNames[objectIndex] not in numTimesObjectVidDissected:
				numTimesObjectVidDissected[objectNames[objectIndex]] = "0"
			t.createIntervalFrameImages(path, "training_images_from_videos", objectNames[objectIndex],numTimesObjectVidDissected[objectNames[objectIndex]])
			numTimesObjectVidDissected[objectNames[objectIndex]] = str(int(numTimesObjectVidDissected[objectNames[objectIndex]])+1)
			objectIndex += 1
		for o in objectNames:
			exec("self."+o+"TemplateList=t.createListOfImageTemplates('"+o+"', 'training_images_from_videos')")
示例#4
0
def main(args):
    # 加载数据
    x, y = load_data(args.dataset)
    n_clusters = len(np.unique(y))

    # 设置参数
    if args.dataset == 'mnist' or args.dataset == 'fmnist':
        args.update_interval = 140
        args.pretrain_epochs = 301
        ae_weights_init = tf.variance_scaling_initializer(scale=1. / 3., mode='fan_in', distribution='uniform')
    # add feature dimension size to the beginning of hidden_dims
    feature_dim = x.shape[1]
    args.encoder_dims = [feature_dim] + args.encoder_dims
    print(args.encoder_dims)
    if args.pretrain == True:
        # 预训练
        print('Begin Pretraining')
        t0 = time()
        pretrainer = Pretrainer(args, ae_weights_init)
        saver = pretrainer(x, y)
        # print(saver)
        print('Pretraining time: %ds' % round(time() - t0))
    # 清理计算图
    tf.reset_default_graph()
    # Model训练
    print('Begin Model training')
    t1 = time()
    trainer = Trainer(args, ae_weights_init, n_clusters)
    trainer(x, y)
    print('Model training time: %ds' % round(time() - t1))
示例#5
0
    isAudio = False

    if (len(sys.argv) == 3):
        isAudio = True
        NLU.Helpers.logger.info("Audio mode")

    if sys.argv[1] == "Train":
        """ Training mode

		Trains GeniSys.
		"""

        NLU.Helpers.logger.info("Training mode")

        Train = Trainer()
        Train.trainModel()

    elif sys.argv[1] == "Server":
        """ Server mode

		Allows communication with GeniSys via HTTP requests.
		"""

        NLU.Helpers.logger.info("Server mode")

        NLU.engine(isAudio)
        NLU.iotJumpWayConn()
        NLU.threading()

        NLU.Helpers.logger.info("Inference Started In SERVER Mode")
示例#6
0
文件: Transformer.py 项目: bothe/NMT
parser.add_argument('-l',
                    '--label_smoothing',
                    type=bool_type_check,
                    default=False,
                    help="\nlabel smoothing 적용\n" + "default : False\n\n")

parser.add_argument('-p',
                    '--ckpt_path',
                    type=str,
                    default=None,
                    help="\ncheckpoint path - default : None\n" +
                    "argument는 Train.py에서 folder 값 또는 checkpoint file name\n" +
                    "ex1) -c ./foo/results/2019-04-18__004330\n" +
                    "ex2) -c ./foo/results/2019-04-18__004330/ckpt.file\n\n")

parser.add_argument(
    '-E',
    '--ckpt_epoch',
    type=int,
    default=None,
    help="\ncheckpoint path가 folder일 경우 불러올 checkpoint의 epoch\n" +
    "만약 checkpoint의 path가 folder일 때, checkpoint_epoch를 설정하지 않으면\n" +
    "가장 최근의 checkpoint를 불러옴\n\n")

args = parser.parse_args()
kwargs = vars(args)

transformer = Trainer(**kwargs)
transformer.start()
示例#7
0
                    "ex) -S 256 256 128\n" + "default : 256\n\n")

parser.add_argument('-l',
                    '--label_smoothing',
                    type=bool_type_check,
                    default=False,
                    help="\nlabel smoothing 적용\n" + "default : False\n\n")

parser.add_argument('-p',
                    '--ckpt_path',
                    type=str,
                    default=None,
                    help="\ncheckpoint path - default : None\n" +
                    "argument는 Train.py에서 folder 값 또는 checkpoint file name\n" +
                    "ex1) -c ./foo/results/2019-04-18__004330\n" +
                    "ex2) -c ./foo/results/2019-04-18__004330/ckpt.file\n\n")

parser.add_argument(
    '-E',
    '--ckpt_epoch',
    type=int,
    default=None,
    help="\ncheckpoint path가 folder일 경우 불러올 checkpoint의 epoch\n" +
    "만약 checkpoint의 path가 folder일 때, checkpoint_epoch를 설정하지 않으면\n" +
    "가장 최근의 checkpoint를 불러옴\n\n")

args = parser.parse_args()
kwargs = vars(args)

translator = Trainer(**kwargs)
translator.start()
示例#8
0
from __future__ import print_function
from argparse import ArgumentParser, RawTextHelpFormatter
from Train import Trainer

parser = ArgumentParser(formatter_class = RawTextHelpFormatter)

parser.add_argument('-f', '--result_folder', type = str, default = None,
    help = "\n모델의 진행 사항을 저장할 폴더\n" + "default : 현재 위치에 Result folder 생성\n\n")

parser.add_argument('-P', '--ckpt_path', type = str, default = None,
    help = "\ncheckpoint path - default : None\n" + 
        "argument는 Train.py에서 folder 값 또는 checkpoint file name\n" +
        "ex1) -c ./foo/results/2019-04-18__004330\n" +
        "ex2) -c ./foo/results/2019-04-18__004330/ckpt.file\n\n")

parser.add_argument('-E', '--ckpt_epoch', type = int, default = None,
    help = "\ncheckpoint path가 folder일 경우 불러올 checkpoint의 epoch\n" +
        "만약 checkpoint의 path가 folder일 때, checkpoint_epoch를 설정하지 않으면\n" +
        "가장 최근의 checkpoint를 불러옴\n\n")

args                        = parser.parse_args()
kwargs                      = vars(args)

model = Trainer(**kwargs)
model.start()
示例#9
0
文件: run.py 项目: abhishek-924/NLU
                                            sort_keys=True),
                        status=200,
                        mimetype="application/json")


if __name__ == "__main__":

    if sys.argv[1] == "TRAIN":

        ###############################################################
        #
        # Is triggered when the 1st commandline line argument is TRAIN
        #
        ###############################################################

        Train = Trainer(NLU.jumpWayClient)
        Train.trainModel()

    elif sys.argv[1] == "SERVER":

        ###############################################################
        #
        # Is triggered when the 1st commandline line argument is SERVER
        #
        ###############################################################

        NLU.initNLU()

        NLU.Helpers.logMessage(NLU.LogFile, "Inference", "INFO",
                               "Inference Started In SERVER Mode")
示例#10
0
            'epochs': 50,
            'batch_size': 128,
            'z_latent': 20,  # eta1 = dx
            'eta1': 10.0,
            'eta2': 1e-3,
            'eta3': 10e-5,
            'x_dim': 159
        }  # eta2 = dz
        # eta3 = regularization
    elif (model_name == 'IV'):
        hyper_params = {
            'lr': 0.001,
            'epochs': 110,
            'batch_size': 128,
            'z_latent': 20,
            'eta1': 10.0,
            'eta2': 1e-4,
            'eta3': 1e-5,
            'alpha': 0.050,
            'steps_inner': 10
        }
    else:
        raise NameError('Wrong model name')

    model = get_model(model_name, hyper_params, rng)
    step_sample = 50

    trainer = Trainer(model, hyper_params, step_sample, shuffle=False)
    z_pred, x_pred = trainer.fit(X, dX, z_ref, rng_batch)
    pdb.set_trace()
示例#11
0
from Train import Trainer

a = Trainer()
a.run()
示例#12
0
import sys
sys.path.insert(0, '../src/modules/Feature_Extractor')
from Train import Trainer
from Loc_Extractor import Extractor

e = Extractor()
t = Trainer()
t.createIntervalFrameImages("../data/object_videos/cube1.mov", "out_dir", "cube","1")
#t.createIntervalFrameImages("../data/object_videos/sphere1.mov", "out_dir", "sphere","1")
#t.createIntervalFrameImages("../data/object_videos/sphere2.mov", "out_dir", "sphere","2")
cubeTemplateList = t.createListOfImageTemplates("cube", "out_dir")
#templateListList = [cubeTemplateList,sphereTemplateList]
print e.getObjectLoc("../data/image.png", cubeTemplateList, 0.7)
#e.getObjectLoc( "../data/cube.png", cubeTemplateList, 0.8)
#print e.findAllObjects("../data/both_alt_env.png",templateListList, 0.8)
示例#13
0
def train_run(**kwargs):

    cost = kwargs['loss_info']
    optimizer = kwargs['optimizer_info']
    learning_rate = kwargs['learning_rate']
    drop_out_rate = kwargs['drop_out_rate']
    act_func = kwargs['act_func']
    layer_cnt = int(kwargs['layer_cnt'])
    model_id = int(kwargs['tr_model_id'])
    normal_data = kwargs['normal_data']
    abnormal_data = kwargs['abnormal_data']
    validation = kwargs['tr_validation']

    k_fold_list = []
    # validation 수치 변경
    if int(validation) == 2:
        print(validation, type(validation))
        k_fold_list.append(50)
    elif int(validation) == 5:
        print(validation, type(validation))
        k_fold_list.append(20)
    elif int(validation) == 10:
        print(validation, type(validation))
        k_fold_list.append(10)
    elif int(validation) == 15:
        print(validation, type(validation))
        k_fold_list.append(18)
    elif int(validation) == 20:
        print(validation, type(validation))
        k_fold_list.append(5)

    # print('dl_option : ', cost, optimizer, learning_rate, drop_out_rate, act_func, layer_cnt, model_id, validation)

    k_fold = k_fold_list[0]

    def _return_loop_number(string):
        if string != '_':
            under_Bar = string.find('_')
            first_data_n = int(string[:under_Bar])
            last_data_n = int(string[under_Bar + 1:])
            return first_data_n, last_data_n

    # path = '/home/obsk/Javis_dl_system/data/I66'
    # /opt/home/data/I66/DICOM/train/abnormal/I66_mri_AB_00000029
    # /home/obsk/v_nas2/I66/DICOM/train/abnormal/I66_mri_AB_00000029
    # path = 'D:/data/I66'

    # normal data get
    normal_file_path_list = []
    normal_data_chklist = []
    if normal_data != '_':
        normal_start, normal_fin = _return_loop_number(normal_data)
        # normal_length = normal_fin - normal_start + 1

        # client = MongoClient('mongodb://172.16.52.79:27017')
        # db = client.ohif_deployment
        # cursor = db.study_normtraining.find().sort('normtrain_id', pymongo.ASCENDING)

        cur = OraDB.prepareCursor()
        cur.execute(
            "select del_yn, dataid, file_path, normtrain_id from study_normtraining order by normtrain_id asc"
        )

        for row in cur:
            del_yn, dataid, file_path, normtrain_id = list(row)
            if 'del_yn' != 'y' and 'I66' in dataid:
                normal_data_chklist.append(file_path)
        print(normal_data_chklist)
        for idx in range(normal_start - 1, normal_fin):
            normal_file_path_list.append(normal_data_chklist[idx])
        print(normal_file_path_list)
        OraDB.releaseConn()

    # abnormal data get
    abnormal_file_path_list = []
    abnormal_data_chklist = []
    if abnormal_data != '_':
        abnormal_start, abnormal_fin = _return_loop_number(abnormal_data)
        # abnormal_length = abnormal_fin - abnormal_start + 1

        # client = MongoClient('mongodb://172.16.52.79:27017')
        # db = client.ohif_deployment
        # cursor = db.study_abnormtraining.find().sort('abnormtrain_id', pymongo.ASCENDING)

        cur = OraDB.prepareCursor()
        cur.execute(
            "select del_yn, dataid, file_path, normtrain_id from study_abnormtraining order by abnormtrain_id asc"
        )

        for row in cur:
            del_yn, dataid, file_path, normtrain_id = list(row)
            if del_yn != 'y' and 'I66' in dataid:
                abnormal_data_chklist.append(file_path)
        print(abnormal_data_chklist)
        for idx in range(abnormal_start - 1, abnormal_fin):
            abnormal_file_path_list.append(abnormal_data_chklist[idx])
        print(abnormal_file_path_list)
        OraDB.releaseConn()

    # copy nas normal data to local temp directory
    local_n_datapath_list = []
    for nas_path in normal_file_path_list:
        temp_path = nas_path.replace(
            '/medimg/', '/home/user01/Javis_dl_system/data_temp/')
        if not os.path.exists(temp_path):
            os.makedirs(temp_path)
        data_mover.nas_to_dlserver(nas_path, temp_path)
        local_n_datapath_list.append(temp_path)

    # copy nas abnormal data to local temp directory
    local_ab_datapath_list = []
    for nas_path in abnormal_file_path_list:
        temp_path = nas_path.replace(
            '/medimg/', '/home/user01/Javis_dl_system/data_temp/')
        if not os.path.exists(temp_path):
            os.makedirs(temp_path)
        data_mover.nas_to_dlserver(nas_path, temp_path)
        local_ab_datapath_list.append(temp_path)

    tot_datapath_list = local_n_datapath_list + local_ab_datapath_list
    # print('tot_data_id_list : ', tot_datapath_list)

    if len(tot_datapath_list) <= 1:
        print('CANNOT RUN WITH 0, 1 DATA SET')
        raise FileNotFoundError

    shuffle(tot_datapath_list)

    fin_datapath_list = []
    # path : /home/bjh/obsk/v_nas2/I66/DICOM/train/abnormal/I66_mri_AB_00000039

    for path in tot_datapath_list:
        datasaver = LabelDataSaver.DataSaver(path)
        datasaver.saveYdata_labeled()
        x_path = path + '/img/x'
        y_path = path + '/img/y'
        if os.path.isdir(y_path) is True:
            if len(os.listdir(y_path)) == len(os.listdir(x_path)):
                fin_datapath_list.append(path)

    dataset_cnt = len(fin_datapath_list)  # n
    # b_size = 1
    # k = k_fold

    data_loader = TrainDataLoader.DataLoader(data_path_list=fin_datapath_list,
                                             k_fold=k_fold,
                                             c_size=256,
                                             i_channel=1,
                                             n_class=2)
    trainer = Trainer(data_loader=data_loader,
                      model_id=model_id,
                      optimizer=optimizer,
                      learning_rate=learning_rate,
                      cost_name=cost,
                      act_func=act_func,
                      layer_n=layer_cnt)
    trainer.train(n_epochs=1,
                  n_t_iters=(math.ceil(dataset_cnt / k_fold *
                                       (k_fold - 1)) - 1) * 8,
                  n_v_iters=math.ceil(dataset_cnt / k_fold) * 8,
                  b_size=1,
                  keep_prob=drop_out_rate)