示例#1
0
def make_constant(graphs, hyp, target, invariant):
    """
    Parameters
    ----------
    graphs : dictionary of graphs with precomputed graph properties

    hyp : hypothesis object

    target : graph invariant to conjecture on

    invariant : graph invariant to compare with target

    
    
    Returns
    -------
    [lower, upper] : list
          
    lower : conjecture object
           - 'If G satisfies hyp, then target(G) >= invariant(G) + m' 
            where m = min{target(G) - invariant(G): G is in the graph database}

    upper : conjecture object      
           - 'If G satisfies hyp, then target(G) <= invariant(G) + M',
            where M = max{target(G) - invariant(G): G is in the graph database}.

    """

    constants = []

    for G in graphs:
        constants.append(G[target] - G[invariant])

    if constants == []:
        lower = None
        upper = None
        return lower, upper

    else:
        constants.sort()
        m = min(constants)
        M = max(constants)

        if m == 0:
            lower = Conjecture(hyp, target, " >= ", f"{invariant}")
        elif m > -4 and m < 4:
            lower = Conjecture(hyp, target, " >= ", f"{invariant} + {m}")
        else:
            lower = None

        if M == 0:
            upper = Conjecture(hyp, target, " <= ", f"{invariant}")
        elif M > -4 and M < 4:
            upper = Conjecture(hyp, target, " <= ", f"{invariant} + {M}")
        else:
            upper = None

        return [lower, upper]
示例#2
0
def make_ratio(graphs, hyp, target, invariant):
    """
    Parameters
    ----------
    graphs : dictionary of graphs with precomputed graph properties

    hyp : hypothesis object

    target : graph invariant to conjecture on

    invariant : graph invariant to compare with target
    
    
    Returns
    -------
    [lower, upper] : list

    lower : conjecture object
           - 'If G satisfies hyp, then target(G) >= m*invariant(G)' 
            where m = min{target(G)/invariant(G): G is in the graph database}

    upper : conjecture object      
           - 'If G satisfies hyp, then target(G) <= M*invariant(G)',
            where M = max{target(G)/invariant(G): G is in the graph database}.

    """

    ratios = []

    for G in graphs:
        ratios.append(
            Fraction(G[target] / G[invariant]).limit_denominator(1000))

    if ratios == []:
        lower = None
        upper = None
        return lower, upper

    else:
        ratios.sort()
        m = min(ratios)
        M = max(ratios)

        if m == 1:
            lower = Conjecture(hyp, target, " >= ", f"{invariant}")
        elif m > -4 and m < 4:
            lower = Conjecture(hyp, target, " >= ", f"{m} * {invariant}")
        else:
            lower = None

        if M == 1:
            upper = Conjecture(hyp, target, " <= ", f"{invariant}")
        elif M > -4 and M < 4:
            upper = Conjecture(hyp, target, " <= ", f"{M} * {invariant}")
        else:
            upper = None

        return [lower, upper]
示例#3
0
def make_ratio_five(graphs, hyp, target, invariant1, invariant2, invariant3):

    ratios = []

    for G in graphs:
        if G[invariant1] != G[invariant2]:
            ratios.append(
                Fraction(
                    (G[target] * (G[invariant1]) /
                     (G[invariant2] + G[invariant3]))).limit_denominator(1000))

    if ratios == []:
        upper = None
        lower = None
        return lower, upper

    else:
        m = min(ratios)
        M = max(ratios)

        if m == 1:
            upper = Conjecture(
                hyp, target, " <= ",
                f"( {invariant2} + {invariant3} ) / {invariant1}")
        elif m > -4 and m < 4:
            upper = Conjecture(
                hyp, target, " <= ",
                f"{m} * ( {invariant2} + {invariant3} ) / {invariant1} ")
        else:
            upper = None

        if M == 1:
            upper = Conjecture(
                hyp, target, " <= ",
                f"( {invariant2} + {invariant3} ) / {invariant1}")
        elif M > -4 and M < 4:
            upper = Conjecture(
                hyp, target, " <= ",
                f"{M} * ( {invariant2} + {invariant3} ) / {invariant1} ")
        else:
            upper = None

        return [lower, upper]
示例#4
0
def make_ratio_four(graphs, hyp, target, invariant1, invariant2):
    """
    Parameters
    ----------
    graphs : dictionary of graphs with precomputed graph properties

    hyp : hypothesis object

    target : graph invariant to conjecture on

    invariant1 : graph invariant to compare with target

    invariant2 : graph invariant to compare with target
    
    
    Returns
    -------
    [lower, upper] : list
          
    lower : conjecture object 
            - 'If G satisfies hyp, then target(G) >= m*(invariant1(G) - invariant2(G))' 
             where m = min{target(G)/ (invariant1(G) - invariant2(G)): G is in the graph database}
          
    upper : conjecture object 
            - 'If G satisfies hyp, then target(G) <= M*(invariant1(G) - invariant2(G))' 
             where M = max{target(G)/ (invariant1(G) - invariant2(G)): G is in the graph database}

    """

    ratios = []
    for G in graphs:
        if G[invariant1] != G[invariant2]:
            ratios.append(
                Fraction(
                    G[target] /
                    (G[invariant1] - G[invariant2])).limit_denominator(1000))

    if ratios == []:
        upper = None
        lower = None
        return lower, upper

    else:
        m = min(ratios)
        M = max(ratios)

        if m == 1:
            lower = Conjecture(hyp, target, " >= ",
                               f"{invariant1} - {invariant2}")
        elif m > -4 and m < 4:
            lower = Conjecture(hyp, target, " >= ",
                               f"{m} * ( {invariant1} - {invariant2} )")
        else:
            lower = None

        if M == 1:
            upper = Conjecture(hyp, target, " <= ",
                               f"{invariant1} - {invariant2}")
        elif M > -4 and M < 4:
            upper = Conjecture(hyp, target, " <= ",
                               f"{M} * ( {invariant1} - {invariant2} )")
        else:
            upper = None

        return [lower, upper]
示例#5
0
def make_constant_two(graphs, hyp, target, invariant1, invariant2):
    """
    Parameters
    ----------
    graphs : dictionary of graphs with precomputed graph properties

    hyp : hypothesis object

    target : graph invariant to conjecture on

    invariant1 : graph invariant to compare with target

    invariant2 : graph invariant to compare with target
    
    
    Returns
    -------
    [lower, upper] : list
          
    lower : conjecture object 
            - 'If G satisfies hyp, then target(G) >= invariant1(G)/invariant2(G) + m' 
            where m = min{target(G) - invariant1(G)/invariant2(G): G is in the graph database}
          
    upper : conjecture object
            - 'If G satisfies hyp, then target(G) <= invariant1(G)/invariant2(G) + M',
            where M = min{target(G) - invariant1(G)/invariant2(G): G is in the graph database}.

    """
    constants = []

    for G in graphs:
        constants.append(
            Fraction(G[target] -
                     (G[invariant1] / G[invariant2])).limit_denominator(1000))
    if constants == []:
        upper = None
        lower = None
        return lower, upper
    else:
        m = min(constants)
        M = max(constants)

        if m == 0:
            lower = Conjecture(hyp, target, " >= ",
                               f"{invariant1} / {invariant2}")
        elif m > -4 and m < 4:
            lower = Conjecture(hyp, target, " >= ",
                               f"( {invariant1} / {invariant2} ) + {m}")
        else:
            lower = None

        if M == 0:
            upper = Conjecture(hyp, target, " <= ",
                               f"{invariant1} / {invariant2}")
        elif M > -4 and M < 4:
            upper = Conjecture(hyp, target, " <= ",
                               f"( {invariant1} / {invariant2} ) + {M}")
        else:
            upper = None

        return lower, upper