示例#1
0
def GiantViewer(raw_filename, cal_filename):
    '''Generate a 3D view of an x2d file, using the calibration.'''
    raw_frames = {100: None}
    print 'loading calibration'
    camera_info = GiantReader.readCal(cal_filename)

    camera_ids = None
    print "Camera IDs:\n{}".format(camera_ids)
    print 'loading 2d'
    raw_dict = GiantReader.readAsciiRaw(raw_filename)
    raw_frames = raw_dict['frames']

    print 'num frames', raw_dict['numFrames']

    mats = [
        Calibrate.makeMat(camera['MAT'], camera['DISTORTION'], (512, 440))
        for camera in camera_info['Cameras']
    ]
    track3d = Label.Track3D(mats)

    primitives = QGLViewer.makePrimitives(vertices=[], altVertices=[])
    primitives2D = QGLViewer.makePrimitives2D(([], [0]))
    cb = functools.partial(intersectRaysCB,
                           raw_frames=raw_frames,
                           mats=mats,
                           primitives=primitives,
                           primitives2D=primitives2D,
                           track3d=track3d)
    QGLViewer.makeViewer(primitives=primitives,
                         primitives2D=primitives2D,
                         timeRange=(1, max(raw_frames.keys()), 1, 100.0),
                         callback=cb,
                         mats=mats,
                         camera_ids=camera_ids)  # , callback=intersectRaysCB
示例#2
0
def main():
    global State, mats, movieFilenames, primitives
    global movies, primitives2D, deinterlacing, detectingWands
    import IO
    import sys, os
    deinterlacing = False
    detectingWands = False
    detectingTiara = False
    dot_detections = None
    detections_filename = None
    frame_offsets = None
    firstFrame, lastFrame = 0, 5000
    drawDotSize = 4.0
    fovX, (ox,
           oy), pan_tilt_roll, tx_ty_tz, distortion = 50., (0,
                                                            0), (0, 0,
                                                                 0), (0, 1250,
                                                                      0), (0,
                                                                           0)
    mats = []
    grip_directory = os.environ['GRIP_DATA']

    if 0:
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 37.9, (0, 0), (
            -66.0, 3.5, -0.2), (4850, 1330, 3280), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat0 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 55.8, (0, 0), (
            -103.6, 3.5, -0.3), (2980, 1380, -2180), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat1 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 49.3, (0, 0), (
            27.9, 4.0, -0.2), (-5340, 1150, 5030), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat2 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 50.6, (0, 0), (
            -156.6, 4.9, 0.2), (-105, 1400, -4430), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat3 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        mats = [mat0, mat1, mat2, mat3]
        xcp_filename = '154535_Cal168_Floor_Final.xcp'
        directory = os.path.join(grip_directory, 'REFRAME')
        movieFilenames = [
            '001E0827_01.MP4', '001F0813_01.MP4', '001G0922_01.MP4',
            '001H0191_01.MP4'
        ]
        #mats,movieFilenames = mats[:1],movieFilenames[:1] # restrict to single-view
        frame_offsets = [119 + 160, 260, 339, 161]
        small_blur, large_blur = 1, 25
        min_dot_size = 1.0
        max_dot_size = 20.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 250, 250  #135,135
    elif 0:
        xcp_filename = '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_01.xcp'
        detections_filename = 'detections.dat'
        detectingTiara = True
        pan_tilt_roll = (0, 0, 90)
        distortion = (0.291979, 0.228389)
        directory = os.path.join(os.environ['GRIP_DATA'], 'ted')
        movieFilenames = [
            '201401211653-4Pico-32_Quad_Dialogue_01_%d.mpg' % xi
            for xi in range(1)
        ]
        firstFrame = 511
        small_blur, large_blur = 1, 20
        min_dot_size = 1.0
        max_dot_size = 16.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 0, 170
    elif 1:
        xcp_filename = '50_Grip_RoomCont_AA_02.xcp'
        detections_filename = 'detections.dat'
        pan_tilt_roll = (0, 0, 0)
        distortion = (0.291979, 0.228389)
        directory = os.path.join(os.environ['GRIP_DATA'], '151110')
        movieFilenames = ['50_Grip_RoomCont_AA_02.v2.mov']
        firstFrame = 0
        small_blur, large_blur = 1, 20
        min_dot_size = 1.0
        max_dot_size = 16.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 170, 170

    attrs = dict([(v, eval(v)) for v in [
        'small_blur', 'large_blur', 'threshold_bright', 'threshold_dark_inv',
        'circularity_threshold', 'min_dot_size', 'max_dot_size'
    ]])

    primitives2D = QGLViewer.makePrimitives2D(([], []), ([], []))
    primitives = []
    if len(movieFilenames) is 1:
        # TODO: time_base, timecode
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mats = [[
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]]
        camera_ids = ['video']
        movies = [
            MovieReader.open_file(os.path.join(directory, movieFilenames[0]),
                                  audio=False)
        ]
    else:  # hard coded cameras
        if xcp_filename.endswith('.xcp'):
            if detectingTiara:  # gruffalo
                c3d_filename = os.path.join(
                    directory,
                    '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_02.c3d')
                from IO import C3D
                c3d_dict = C3D.read(c3d_filename)
                global c3d_frames
                c3d_frames, c3d_fps, c3d_labels = c3d_dict['frames'], c3d_dict[
                    'fps'], c3d_dict['labels']
                c3d_subject = ''  #'TedFace'
                which = np.where(
                    [s.startswith(c3d_subject) for s in c3d_labels])[0]
                c3d_frames = c3d_frames[:, which, :]
                c3d_labels = [c3d_labels[i] for i in which]
                print len(c3d_frames)
            xcp, xcp_data = ViconReader.loadXCP(
                os.path.join(directory, xcp_filename))
            mats.extend(xcp)
        elif xcp_filename.endswith('.cal'):
            from IO import OptitrackReader
            xcp, xcp_data = OptitrackReader.load_CAL(
                os.path.join(directory, xcp_filename))
            mats = xcp
            print 'mats', len(mats), len(movieFilenames)
            assert (len(mats) == len(movieFilenames))
        camera_ids = []
        movies = []
        for ci, mf in enumerate(movieFilenames):
            fo = 0 if frame_offsets is None else frame_offsets[ci]
            movies.append(
                MovieReader.open_file(os.path.join(directory, mf),
                                      audio=False,
                                      frame_offset=fo))
        camera_ids = ['cam_%d' % ci for ci in xrange(len(mats))]
        print len(mats), len(movies), len(camera_ids)
    primitives.append(GLPoints3D([]))
    primitives.append(GLPoints3D([]))
    primitives.append(GLPoints3D([]))
    primitives[0].colour = (0, 1, 1, 0.5)  # back-projected "cyan" points
    primitives[1].colour = (0, 0, 1, 0.5)
    primitives[1].pointSize = 5
    primitives[2].colour = (1, 0, 0, 0.99)

    if len(movieFilenames) != 1 and detections_filename != None:
        try:
            dot_detections = IO.load(detections_filename)[1]
        except:
            numFrames = len(c3d_frames)  # TODO HACK HACK
            dot_detections = movies_to_detections(movies, range(numFrames),
                                                  deinterlacing, attrs)
            IO.save(detections_filename, dot_detections)

        if detectingTiara:
            x3ds_seq = {}
            for fi in dot_detections.keys():
                frame = c3d_frames[(fi - 55) % len(c3d_frames)]
                which = np.array(np.where(frame[:, 3] == 0)[0], dtype=np.int32)
                x3ds_seq[fi] = np.concatenate((VICON_tiara_x3ds + np.array([150,-100,0],dtype=np.float32),frame[which,:3])), \
                      np.concatenate((np.arange(len(VICON_tiara_x3ds),dtype=np.int32),which+len(VICON_tiara_x3ds)))

            dot_labels = get_labels(dot_detections.keys(),
                                    x3ds_seq,
                                    dot_detections,
                                    mats,
                                    x2d_threshold=0.05)

            calibration_fi = 546 - 2 - 6

            RT = tighten_calibration(x3ds_seq[calibration_fi],
                                     dot_labels[calibration_fi], mats)
            for v in c3d_frames:
                v[:, :3] = np.dot(v[:, :3], RT[:3, :3].T) + RT[:, 3]

            if True:
                dot_detections = IO.load(detections_filename)[1]
                x3ds_seq = {}
                for fi in dot_detections.keys():
                    frame = c3d_frames[(fi - 55) % len(c3d_frames)]
                    which = np.array(np.where(frame[:, 3] == 0)[0],
                                     dtype=np.int32)
                    x3ds_seq[fi] = np.concatenate((VICON_tiara_x3ds + np.array([0,1000,0],dtype=np.float32),frame[which,:3])), \
                          np.concatenate((np.arange(len(VICON_tiara_x3ds),dtype=np.int32),which+len(VICON_tiara_x3ds)))

                #dot_labels = get_labels(dot_detections.keys(), x3ds_seq, dot_detections, mats, x2d_threshold = 0.05)

    if detectingTiara:
        primitives.append(GLPoints3D(VICON_tiara_x3ds + [0, 1000, 0]))
        primitives[-1].pointSize = 5

    global track3d, prev_frame, booting, trackGraph
    track3d = Label.Track3D(mats[:len(movies)],
                            x2d_threshold=0.03,
                            x3d_threshold=5.0,
                            min_rays=3,
                            boot_interval=2)  #tilt_threshold = 0.01, gruffalo
    trackGraph = Label.TrackGraph()
    prev_frame = 0
    booting = 1

    from UI import QApp
    from PySide import QtGui
    from GCore import State
    # Modified the options parameter for fields to be the range of acceptable values for the box
    # Previously would crash if small_blur got too low
    QApp.fields = {
        'image filter': [
            ('small_blur', 'Small blur radius',
             'This is part of the image filter which controls the size of smallest detected features.',
             'int', small_blur, {
                 "min": 0,
                 "max": None
             }),
            ('large_blur', 'Large blur radius',
             'This is part of the image filter which controls the size of largest detected features.',
             'int', large_blur, {
                 "min": 0,
                 "max": None
             }),
            ('threshold_bright', 'threshold_bright',
             'This is part of the image filter which controls the size of smallest detected features.',
             'int', threshold_bright, {
                 "min": 0,
                 "max": 255
             }),
            ('threshold_dark_inv', 'threshold_dark_inv',
             'This is part of the image filter which controls the size of largest detected features.',
             'int', threshold_dark_inv, {
                 "min": 0,
                 "max": 255
             }),
            ('circularity_threshold', 'circularity_threshold',
             'How circular?.', 'float', circularity_threshold, {
                 "min": 0,
                 "max": 100
             }),
            ('min_dot_size', 'min_dot_size',
             'min_dot_size smallest detected features.', 'float', min_dot_size,
             {
                 "min": 0,
                 "max": 100
             }),
            ('max_dot_size', 'max_dot_size',
             'max_dot_size largest detected features.', 'float', max_dot_size,
             {
                 "min": 0,
                 "max": 100
             }),
        ]
    }
    State.addKey('dotParams', {'type': 'image filter', 'attrs': attrs})
    State.setSel('dotParams')
    appIn = QtGui.QApplication(sys.argv)
    appIn.setStyle('plastique')
    win = QApp.QApp()
    win.setWindowTitle('Imaginarium Dots Viewer')
    QGLViewer.makeViewer(primitives=primitives,
                         primitives2D=primitives2D,
                         timeRange=(firstFrame, lastFrame),
                         callback=setFrame,
                         mats=mats,
                         camera_ids=camera_ids,
                         movies=movies,
                         pickCallback=picked,
                         appIn=appIn,
                         win=win)
def main(x2d_filename, xcp_filename, c3d_filename=None):
    '''Generate a 3D view of an x2d file, using the calibration.'''
    global x2d_frames, mats, Ps, c3d_frames, primitives, primitives2D, track3d, prev_frame, track_orn, orn_graph, boot, orn_mapper, mar_mapper
    prev_frame = None
    c3d_frames = None
    if c3d_filename != None:
        c3d_dict = C3D.read(c3d_filename)
        c3d_frames, c3d_fps, c3d_labels = c3d_dict['frames'], c3d_dict[
            'fps'], c3d_dict['labels']
    mats, xcp_data = ViconReader.loadXCP(xcp_filename)
    camera_ids = [int(x['DEVICEID']) for x in xcp_data]
    print 'loading 2d'
    x2d_dict = ViconReader.loadX2D(x2d_filename)
    x2d_frames = x2d_dict['frames']
    cameras_info = ViconReader.extractCameraInfo(x2d_dict)
    print 'num frames', len(x2d_frames)
    Ps = [m[2] / (m[0][0, 0]) for m in mats]
    track3d = Label.Track3D(mats)

    primitives = QGLViewer.makePrimitives(vertices=[], altVertices=[])
    primitives2D = QGLViewer.makePrimitives2D(([], [0]))

    global g_all_skels, md
    directory = os.path.join(os.environ['GRIP_DATA'], '151110')
    _, orn_skel_dict = IO.load(os.path.join(directory, 'orn.skel'))
    movie_fn = os.path.join(directory, '50_Grip_RoomCont_AA_02.v2.mov')
    md = MovieReader.open_file(movie_fn,
                               audio=True,
                               frame_offset=0,
                               volume_ups=10)

    asf_filename = os.path.join(directory, 'Martha.asf')
    amc_filename = os.path.join(directory, 'Martha.amc')
    asf_dict = ASFReader.read_ASF(asf_filename)
    mar_skel_dict = ASFReader.asfDict_to_skelDict(asf_dict)
    mar_skel_dict['anim_dict'] = ASFReader.read_AMC(amc_filename, asf_dict)
    for k in ('geom_Vs', 'geom_vsplits', 'geom_Gs'):
        mar_skel_dict[k] = orn_skel_dict[k].copy()
    mar_skel_dict['shape_weights'] = orn_skel_dict['shape_weights']
    mar_skel_dict['geom_dict'] = orn_skel_dict['geom_dict']

    orn_vss = ViconReader.loadVSS(os.path.join(directory, 'Orn.vss'))
    orn_vss_chan_mapping = [
        orn_vss['chanNames'].index(n) for n in orn_skel_dict['chanNames']
    ]
    orn_anim_dict = orn_skel_dict['anim_dict']
    orn_vss_anim = np.zeros(
        (orn_anim_dict['dofData'].shape[0], orn_vss['numChans']),
        dtype=np.float32)
    orn_vss_anim[:, orn_vss_chan_mapping] = orn_anim_dict['dofData']
    orn_anim_dict['dofData'] = orn_vss_anim
    orn_vss['anim_dict'] = orn_anim_dict
    for x in [
            'geom_dict', 'geom_Vs', 'geom_vsplits', 'geom_Gs', 'shape_weights'
    ]:
        orn_vss[x] = orn_skel_dict[x]
    orn_skel_dict = orn_vss

    g_all_skels = {}
    orn_mesh_dict, orn_skel_mesh, orn_geom_mesh = orn_t = Character.make_geos(
        orn_skel_dict)
    g_all_skels['orn'] = (orn_skel_dict, orn_t)
    orn_skel_dict['chanValues'][:] = 0
    Character.updatePoseAndMeshes(orn_skel_dict, orn_skel_mesh, orn_geom_mesh)

    mar_mesh_dict, mar_skel_mesh, mar_geom_mesh = mar_t = Character.make_geos(
        mar_skel_dict)
    g_all_skels['mar'] = (mar_skel_dict, mar_t)

    #ted_mesh_dict, ted_skel_mesh, ted_geom_mesh = ted_t = Character.make_geos(ted_skel_dict)
    #g_all_skels['ted'] = (ted_skel_dict, ted_t)
    #ted_skel_dict['chanValues'][0] += 1000
    #Character.updatePoseAndMeshes(ted_skel_dict, ted_skel_mesh, ted_geom_mesh)

    mnu = orn_skel_dict['markerNamesUnq']
    mns = orn_skel_dict['markerNames']
    effectorLabels = np.array([mnu.index(n) for n in mns], dtype=np.int32)
    orn_graph = Label.graph_from_skel(orn_skel_dict, mnu)
    boot = -10

    track_orn = Label.TrackModel(orn_skel_dict, effectorLabels, mats)

    #ted = GLSkel(ted_skel_dict['Bs'], ted_skel_dict['Gs']) #, mvs=ted_skel_dict['markerOffsets'], mvis=ted_skel_dict['markerParents'])
    #ted = GLSkeleton(ted_skel_dict['jointNames'],ted_skel_dict['jointParents'], ted_skel_dict['Gs'][:,:,3])
    #ted.setName('ted')
    #ted.color = (1,1,0)
    #orn = GLSkeleton(orn_skel_dict['jointNames'],orn_skel_dict['jointParents'], orn_skel_dict['Gs'][:,:,3])
    #orn.setName('orn')
    #orn.color = (0,1,1)

    #square = GLMeshes(names=['square'],verts=[[[0,0,0],[1000,0,0],[1000,1000,0],[0,1000,0]]],vts=[[[0,0],[1,0],[1,1],[0,1]]],faces=[[[0,1,2,3]]],fts=[[[0,1,2,3]]])
    #square.setImageData(np.array([[[0,0,0],[255,255,255]],[[255,255,255],[0,0,0]]],dtype=np.uint8))
    #orn_geom_mesh.setImageData(np.array([[[0,0,0],[255,255,255]],[[255,255,255],[0,0,0]]],dtype=np.uint8))

    P = Calibrate.composeP_fromData((60.8, ), (-51.4, 14.7, 3.2),
                                    (6880, 2860, 5000),
                                    0)  # roughed in camera for 151110
    ks = (0.06, 0.0)
    mat = Calibrate.makeMat(P, ks, (1080, 1920))
    orn_mapper = Opengl.ProjectionMapper(mat)
    orn_mapper.setGLMeshes(orn_geom_mesh)
    orn_geom_mesh.setImage((md['vbuffer'], (md['vheight'], md['vwidth'], 3)))

    mar_mapper = Opengl.ProjectionMapper(mat)
    mar_mapper.setGLMeshes(mar_geom_mesh)
    mar_geom_mesh.setImage((md['vbuffer'], (md['vheight'], md['vwidth'], 3)))

    global g_screen
    g_screen = Opengl.make_quad_distortion_mesh()

    QGLViewer.makeViewer(mat=mat,md=md,layers = {\
		#'ted':ted, 'orn':orn,
		#'ted_skel':ted_skel_mesh,'ted_geom':ted_geom_mesh,\
		#'square':square,



     'orn_skel':orn_skel_mesh,'orn_geom':orn_geom_mesh,\
     'mar_skel':mar_skel_mesh,'mar_geom':mar_geom_mesh,\
      },
    primitives=primitives, primitives2D=primitives2D, timeRange=(0, len(x2d_frames) - 1, 4, 25.0), callback=intersectRaysCB, mats=mats,camera_ids=camera_ids)