示例#1
0
    def _generateSceneNode(self, file_name, xz_size, peak_height, base_height,
                           blur_iterations, max_size, image_color_invert):
        mesh = None
        scene_node = None

        scene_node = SceneNode()

        mesh = MeshData()
        scene_node.setMeshData(mesh)

        img = QImage(file_name)

        if img.isNull():
            Logger.log("e", "Image is corrupt.")
            return None

        width = max(img.width(), 2)
        height = max(img.height(), 2)
        aspect = height / width

        if img.width() < 2 or img.height() < 2:
            img = img.scaled(width, height, Qt.IgnoreAspectRatio)

        base_height = max(base_height, 0)
        peak_height = max(peak_height, -base_height)

        xz_size = max(xz_size, 1)
        scale_vector = Vector(xz_size, peak_height, xz_size)

        if width > height:
            scale_vector.setZ(scale_vector.z * aspect)
        elif height > width:
            scale_vector.setX(scale_vector.x / aspect)

        if width > max_size or height > max_size:
            scale_factor = max_size / width
            if height > width:
                scale_factor = max_size / height

            width = int(max(round(width * scale_factor), 2))
            height = int(max(round(height * scale_factor), 2))
            img = img.scaled(width, height, Qt.IgnoreAspectRatio)

        width_minus_one = width - 1
        height_minus_one = height - 1

        Job.yieldThread()

        texel_width = 1.0 / (width_minus_one) * scale_vector.x
        texel_height = 1.0 / (height_minus_one) * scale_vector.z

        height_data = numpy.zeros((height, width), dtype=numpy.float32)

        for x in range(0, width):
            for y in range(0, height):
                qrgb = img.pixel(x, y)
                avg = float(qRed(qrgb) + qGreen(qrgb) + qBlue(qrgb)) / (3 *
                                                                        255)
                height_data[y, x] = avg

        Job.yieldThread()

        if image_color_invert:
            height_data = 1 - height_data

        for i in range(0, blur_iterations):
            copy = numpy.pad(height_data, ((1, 1), (1, 1)), mode="edge")

            height_data += copy[1:-1, 2:]
            height_data += copy[1:-1, :-2]
            height_data += copy[2:, 1:-1]
            height_data += copy[:-2, 1:-1]

            height_data += copy[2:, 2:]
            height_data += copy[:-2, 2:]
            height_data += copy[2:, :-2]
            height_data += copy[:-2, :-2]

            height_data /= 9

            Job.yieldThread()

        height_data *= scale_vector.y
        height_data += base_height

        heightmap_face_count = 2 * height_minus_one * width_minus_one
        total_face_count = heightmap_face_count + (width_minus_one * 2) * (
            height_minus_one * 2) + 2

        mesh.reserveFaceCount(total_face_count)

        # initialize to texel space vertex offsets.
        # 6 is for 6 vertices for each texel quad.
        heightmap_vertices = numpy.zeros(
            (width_minus_one * height_minus_one, 6, 3), dtype=numpy.float32)
        heightmap_vertices = heightmap_vertices + numpy.array(
            [[[0, base_height, 0], [0, base_height, texel_height],
              [texel_width, base_height, texel_height],
              [texel_width, base_height, texel_height],
              [texel_width, base_height, 0], [0, base_height, 0]]],
            dtype=numpy.float32)

        offsetsz, offsetsx = numpy.mgrid[0:height_minus_one, 0:width - 1]
        offsetsx = numpy.array(offsetsx, numpy.float32).reshape(
            -1, 1) * texel_width
        offsetsz = numpy.array(offsetsz, numpy.float32).reshape(
            -1, 1) * texel_height

        # offsets for each texel quad
        heightmap_vertex_offsets = numpy.concatenate([
            offsetsx,
            numpy.zeros((offsetsx.shape[0], offsetsx.shape[1]),
                        dtype=numpy.float32), offsetsz
        ], 1)
        heightmap_vertices += heightmap_vertex_offsets.repeat(6, 0).reshape(
            -1, 6, 3)

        # apply height data to y values
        heightmap_vertices[:, 0,
                           1] = heightmap_vertices[:, 5,
                                                   1] = height_data[:-1, :
                                                                    -1].reshape(
                                                                        -1)
        heightmap_vertices[:, 1, 1] = height_data[1:, :-1].reshape(-1)
        heightmap_vertices[:, 2,
                           1] = heightmap_vertices[:, 3, 1] = height_data[
                               1:, 1:].reshape(-1)
        heightmap_vertices[:, 4, 1] = height_data[:-1, 1:].reshape(-1)

        heightmap_indices = numpy.array(numpy.mgrid[0:heightmap_face_count *
                                                    3],
                                        dtype=numpy.int32).reshape(-1, 3)

        mesh._vertices[0:(heightmap_vertices.size //
                          3), :] = heightmap_vertices.reshape(-1, 3)
        mesh._indices[0:(heightmap_indices.size // 3), :] = heightmap_indices

        mesh._vertex_count = heightmap_vertices.size // 3
        mesh._face_count = heightmap_indices.size // 3

        geo_width = width_minus_one * texel_width
        geo_height = height_minus_one * texel_height

        # bottom
        mesh.addFace(0, 0, 0, 0, 0, geo_height, geo_width, 0, geo_height)
        mesh.addFace(geo_width, 0, geo_height, geo_width, 0, 0, 0, 0, 0)

        # north and south walls
        for n in range(0, width_minus_one):
            x = n * texel_width
            nx = (n + 1) * texel_width

            hn0 = height_data[0, n]
            hn1 = height_data[0, n + 1]

            hs0 = height_data[height_minus_one, n]
            hs1 = height_data[height_minus_one, n + 1]

            mesh.addFace(x, 0, 0, nx, 0, 0, nx, hn1, 0)
            mesh.addFace(nx, hn1, 0, x, hn0, 0, x, 0, 0)

            mesh.addFace(x, 0, geo_height, nx, 0, geo_height, nx, hs1,
                         geo_height)
            mesh.addFace(nx, hs1, geo_height, x, hs0, geo_height, x, 0,
                         geo_height)

        # west and east walls
        for n in range(0, height_minus_one):
            y = n * texel_height
            ny = (n + 1) * texel_height

            hw0 = height_data[n, 0]
            hw1 = height_data[n + 1, 0]

            he0 = height_data[n, width_minus_one]
            he1 = height_data[n + 1, width_minus_one]

            mesh.addFace(0, 0, y, 0, 0, ny, 0, hw1, ny)
            mesh.addFace(0, hw1, ny, 0, hw0, y, 0, 0, y)

            mesh.addFace(geo_width, 0, y, geo_width, 0, ny, geo_width, he1, ny)
            mesh.addFace(geo_width, he1, ny, geo_width, he0, y, geo_width, 0,
                         y)

        mesh.calculateNormals(fast=True)

        return scene_node
示例#2
0
    def read(self, file_name):
        mesh = None
        scene_node = None

        extension = os.path.splitext(file_name)[1]
        if extension.lower() in self._supported_extensions:
            vertex_list = []
            normal_list = []
            uv_list = []
            face_list = []
            scene_node = SceneNode()

            mesh = MeshData()
            scene_node.setMeshData(mesh)
            f = open(file_name, "rt")
            for line in f:
                parts = line.split()
                if len(parts) < 1:
                    continue
                if parts[0] == "v":
                    vertex_list.append([float(parts[1]), float(parts[3]), -float(parts[2])])
                if parts[0] == "vn":
                    normal_list.append([float(parts[1]), float(parts[3]), -float(parts[2])])
                if parts[0] == "vt":
                    uv_list.append([float(parts[1]), float(parts[2])])
                if parts[0] == "f":
                    parts = [i for i in map(lambda p: p.split("/"), parts)]
                    for idx in range(1, len(parts)-2):
                        data = [int(parts[1][0]), int(parts[idx+1][0]), int(parts[idx+2][0])]
                        if len(parts[1]) > 2:
                            data += [int(parts[1][2]), int(parts[idx+1][2]), int(parts[idx+2][2])]

                            if parts[1][1] and parts[idx+1][1] and parts[idx+2][1]:
                                data += [int(parts[1][1]), int(parts[idx+1][1]), int(parts[idx+2][1])]
                        face_list.append(data)
                Job.yieldThread()
            f.close()

            mesh.reserveVertexCount(3 * len(face_list))
            num_vertices = len(vertex_list)
            num_normals = len(normal_list)

            for face in face_list:
                # Substract 1 from index, as obj starts counting at 1 instead of 0
                i = face[0] - 1
                j = face[1] - 1
                k = face[2] - 1

                if len(face) > 3:
                    ni = face[3] - 1
                    nj = face[4] - 1
                    nk = face[5] - 1
                else:
                    ni = -1
                    nj = -1
                    nk = -1

                if len(face) > 6:
                    ui = face[6] - 1
                    uj = face[7] - 1
                    uk = face[8] - 1
                else:
                    ui = -1
                    uj = -1
                    uk = -1

                #TODO: improve this handling, this can cause weird errors (negative indexes are relative indexes, and are not properly handled)
                if i < 0 or i >= num_vertices:
                    i = 0
                if j < 0 or j >= num_vertices:
                    j = 0
                if k < 0 or k >= num_vertices:
                    k = 0
                if ni != -1 and nj != -1 and nk != -1:
                    mesh.addFaceWithNormals(vertex_list[i][0], vertex_list[i][1], vertex_list[i][2], normal_list[ni][0], normal_list[ni][1], normal_list[ni][2], vertex_list[j][0], vertex_list[j][1], vertex_list[j][2], normal_list[nj][0], normal_list[nj][1], normal_list[nj][2], vertex_list[k][0], vertex_list[k][1], vertex_list[k][2],normal_list[nk][0], normal_list[nk][1], normal_list[nk][2])
                else:
                    mesh.addFace(vertex_list[i][0], vertex_list[i][1], vertex_list[i][2], vertex_list[j][0], vertex_list[j][1], vertex_list[j][2], vertex_list[k][0], vertex_list[k][1], vertex_list[k][2])

                if ui != -1:
                    mesh.setVertexUVCoordinates(mesh.getVertexCount() - 3, uv_list[ui][0], uv_list[ui][1])

                if uj != -1:
                    mesh.setVertexUVCoordinates(mesh.getVertexCount() - 2, uv_list[uj][0], uv_list[uj][1])

                if uk != -1:
                    mesh.setVertexUVCoordinates(mesh.getVertexCount() - 1, uv_list[uk][0], uv_list[uk][1])

                Job.yieldThread()
            if not mesh.hasNormals():
                mesh.calculateNormals(fast = True)

        return scene_node
示例#3
0
    def read(self, file_name):
        mesh = None
        scene_node = None
        extension = os.path.splitext(file_name)[1]
        if extension.lower() == self._supported_extension:
            vertex_list = []
            normal_list = []
            uv_list = []
            face_list = []
            scene_node = SceneNode()

            mesh = MeshData()
            scene_node.setMeshData(mesh)
            f = open(file_name, "rt")
            for line in f:
                parts = line.split()
                if len(parts) < 1:
                    continue
                if parts[0] == "v":
                    vertex_list.append([float(parts[1]), float(parts[3]), -float(parts[2])])
                if parts[0] == "vn":
                    normal_list.append([float(parts[1]), float(parts[3]), -float(parts[2])])
                if parts[0] == "vt":
                    uv_list.append([float(parts[1]), float(parts[2])])
                if parts[0] == "f":
                    parts = [i for i in map(lambda p: p.split("/"), parts)]
                    for idx in range(1, len(parts)-2):
                        data = [int(parts[1][0]), int(parts[idx+1][0]), int(parts[idx+2][0])]
                        if len(parts[1]) > 2:
                            data += [int(parts[1][2]), int(parts[idx+1][2]), int(parts[idx+2][2])]

                            if parts[1][1] and parts[idx+1][1] and parts[idx+2][1]:
                                data += [int(parts[1][1]), int(parts[idx+1][1]), int(parts[idx+2][1])]
                        face_list.append(data)
            f.close()

            mesh.reserveVertexCount(3 * len(face_list))
            num_vertices = len(vertex_list)
            num_normals = len(normal_list)

            for face in face_list:
                # Substract 1 from index, as obj starts counting at 1 instead of 0
                i = face[0] - 1
                j = face[1] - 1
                k = face[2] - 1

                if len(face) > 3:
                    ni = face[3] - 1
                    nj = face[4] - 1
                    nk = face[5] - 1
                else:
                    ni = -1
                    nj = -1
                    nk = -1

                if len(face) > 6:
                    ui = face[6] - 1
                    uj = face[7] - 1
                    uk = face[8] - 1
                else:
                    ui = -1
                    uj = -1
                    uk = -1

                #TODO: improve this handling, this can cause weird errors
                if i < 0 or i >= num_vertices:
                    i = 0
                if j < 0 or j >= num_vertices:
                    j = 0
                if k < 0 or k >= num_vertices:
                    k = 0
                if(ni != -1 and nj != -1 and nk != -1):
                    mesh.addFaceWithNormals(vertex_list[i][0], vertex_list[i][1], vertex_list[i][2], normal_list[ni][0], normal_list[ni][1], normal_list[ni][2], vertex_list[j][0], vertex_list[j][1], vertex_list[j][2], normal_list[nj][0], normal_list[nj][1], normal_list[nj][2], vertex_list[k][0], vertex_list[k][1], vertex_list[k][2],normal_list[nk][0], normal_list[nk][1], normal_list[nk][2])
                else:
                    mesh.addFace(vertex_list[i][0], vertex_list[i][1], vertex_list[i][2], vertex_list[j][0], vertex_list[j][1], vertex_list[j][2], vertex_list[k][0], vertex_list[k][1], vertex_list[k][2])

                if ui != -1:
                    mesh.setVertexUVCoordinates(mesh.getVertexCount() - 3, uv_list[ui][0], uv_list[ui][1])

                if uj != -1:
                    mesh.setVertexUVCoordinates(mesh.getVertexCount() - 2, uv_list[uj][0], uv_list[uj][1])

                if uk != -1:
                    mesh.setVertexUVCoordinates(mesh.getVertexCount() - 1, uv_list[uk][0], uv_list[uk][1])
            if not mesh.hasNormals():
                mesh.calculateNormals(fast = True)
        return scene_node
示例#4
0
    def read(self, file_name):
        result = None
        extension = os.path.splitext(file_name)[1]
        if extension.lower() == self._supported_extension:
            result = SceneNode()
            # The base object of 3mf is a zipped archive.
            archive = zipfile.ZipFile(file_name, 'r')
            try:
                root = ET.parse(archive.open("3D/3dmodel.model"))

                # There can be multiple objects, try to load all of them.
                objects = root.findall("./3mf:resources/3mf:object", self._namespaces)
                for object in objects:
                    mesh = MeshData()
                    node = SceneNode()
                    vertex_list = []
                    #for vertex in object.mesh.vertices.vertex:
                    for vertex in object.findall(".//3mf:vertex", self._namespaces):
                        vertex_list.append([vertex.get("x"), vertex.get("y"), vertex.get("z")])

                    triangles = object.findall(".//3mf:triangle", self._namespaces)

                    mesh.reserveFaceCount(len(triangles))
                    
                    #for triangle in object.mesh.triangles.triangle:
                    for triangle in triangles:
                        v1 = int(triangle.get("v1"))
                        v2 = int(triangle.get("v2"))
                        v3 = int(triangle.get("v3"))
                        mesh.addFace(vertex_list[v1][0],vertex_list[v1][1],vertex_list[v1][2],vertex_list[v2][0],vertex_list[v2][1],vertex_list[v2][2],vertex_list[v3][0],vertex_list[v3][1],vertex_list[v3][2])
                    #TODO: We currently do not check for normals and simply recalculate them. 
                    mesh.calculateNormals()
                    node.setMeshData(mesh)
                    node.setSelectable(True)
                    
                    transformation = root.findall("./3mf:build/3mf:item[@objectid='{0}']".format(object.get("id")), self._namespaces)
                    if transformation:
                        transformation = transformation[0]

                    if transformation.get("transform"):
                        splitted_transformation = transformation.get("transform").split()
                        ## Transformation is saved as:
                        ## M00 M01 M02 0.0
                        ## M10 M11 M12 0.0
                        ## M20 M21 M22 0.0
                        ## M30 M31 M32 1.0
                        ## We switch the row & cols as that is how everyone else uses matrices!
                        temp_mat = Matrix()
                        # Rotation & Scale
                        temp_mat._data[0,0] = splitted_transformation[0]
                        temp_mat._data[1,0] = splitted_transformation[1]
                        temp_mat._data[2,0] = splitted_transformation[2]
                        temp_mat._data[0,1] = splitted_transformation[3]
                        temp_mat._data[1,1] = splitted_transformation[4]
                        temp_mat._data[2,1] = splitted_transformation[5]
                        temp_mat._data[0,2] = splitted_transformation[6]
                        temp_mat._data[1,2] = splitted_transformation[7]
                        temp_mat._data[2,2] = splitted_transformation[8]
                        
                        # Translation
                        temp_mat._data[0,3] = splitted_transformation[9]
                        temp_mat._data[1,3] = splitted_transformation[10]
                        temp_mat._data[2,3] = splitted_transformation[11]
                        
                        node.setPosition(Vector(temp_mat.at(0,3), temp_mat.at(1,3), temp_mat.at(2,3)))
                        
                        temp_quaternion = Quaternion()
                        temp_quaternion.setByMatrix(temp_mat)
                        node.setOrientation(temp_quaternion)
                        
                        # Magical scale extraction
                        S2 = temp_mat.getTransposed().multiply(temp_mat)
                        scale_x = math.sqrt(S2.at(0,0))
                        scale_y = math.sqrt(S2.at(1,1))
                        scale_z = math.sqrt(S2.at(2,2))
                        node.setScale(Vector(scale_x,scale_y,scale_z))
                        
                        # We use a different coordinate frame, so rotate.
                        rotation = Quaternion.fromAngleAxis(-0.5 * math.pi, Vector(1,0,0))
                        node.rotate(rotation)
                    result.addChild(node)

                #If there is more then one object, group them.
                try:
                    if len(objects) > 1:
                        group_decorator = GroupDecorator()
                        result.addDecorator(group_decorator)
                except:
                    pass
            except Exception as e:
                Logger.log("e" ,"exception occured in 3mf reader: %s" , e)      
        return result  
示例#5
0
    def _generateSceneNode(self, file_name, xz_size, peak_height, base_height, blur_iterations, max_size, image_color_invert):
        mesh = None
        scene_node = None

        scene_node = SceneNode()

        mesh = MeshData()
        scene_node.setMeshData(mesh)

        img = QImage(file_name)

        if img.isNull():
            Logger.log("e", "Image is corrupt.")
            return None

        width = max(img.width(), 2)
        height = max(img.height(), 2)
        aspect = height / width

        if img.width() < 2 or img.height() < 2:
            img = img.scaled(width, height, Qt.IgnoreAspectRatio)

        base_height = max(base_height, 0)
        peak_height = max(peak_height, -base_height)

        xz_size = max(xz_size, 1)
        scale_vector = Vector(xz_size, peak_height, xz_size)

        if width > height:
            scale_vector.setZ(scale_vector.z * aspect)
        elif height > width:
            scale_vector.setX(scale_vector.x / aspect)

        if width > max_size or height > max_size:
            scale_factor = max_size / width
            if height > width:
                scale_factor = max_size / height

            width = int(max(round(width * scale_factor), 2))
            height = int(max(round(height * scale_factor), 2))
            img = img.scaled(width, height, Qt.IgnoreAspectRatio)

        width_minus_one = width - 1
        height_minus_one = height - 1

        Job.yieldThread()

        texel_width = 1.0 / (width_minus_one) * scale_vector.x
        texel_height = 1.0 / (height_minus_one) * scale_vector.z

        height_data = numpy.zeros((height, width), dtype=numpy.float32)

        for x in range(0, width):
            for y in range(0, height):
                qrgb = img.pixel(x, y)
                avg = float(qRed(qrgb) + qGreen(qrgb) + qBlue(qrgb)) / (3 * 255)
                height_data[y, x] = avg

        Job.yieldThread()

        if image_color_invert:
            height_data = 1 - height_data

        for i in range(0, blur_iterations):
            copy = numpy.pad(height_data, ((1, 1), (1, 1)), mode= "edge")

            height_data += copy[1:-1, 2:]
            height_data += copy[1:-1, :-2]
            height_data += copy[2:, 1:-1]
            height_data += copy[:-2, 1:-1]

            height_data += copy[2:, 2:]
            height_data += copy[:-2, 2:]
            height_data += copy[2:, :-2]
            height_data += copy[:-2, :-2]

            height_data /= 9

            Job.yieldThread()

        height_data *= scale_vector.y
        height_data += base_height

        heightmap_face_count = 2 * height_minus_one * width_minus_one
        total_face_count = heightmap_face_count + (width_minus_one * 2) * (height_minus_one * 2) + 2

        mesh.reserveFaceCount(total_face_count)

        # initialize to texel space vertex offsets.
        # 6 is for 6 vertices for each texel quad.
        heightmap_vertices = numpy.zeros((width_minus_one * height_minus_one, 6, 3), dtype = numpy.float32)
        heightmap_vertices = heightmap_vertices + numpy.array([[
            [0, base_height, 0],
            [0, base_height, texel_height],
            [texel_width, base_height, texel_height],
            [texel_width, base_height, texel_height],
            [texel_width, base_height, 0],
            [0, base_height, 0]
        ]], dtype = numpy.float32)

        offsetsz, offsetsx = numpy.mgrid[0: height_minus_one, 0: width - 1]
        offsetsx = numpy.array(offsetsx, numpy.float32).reshape(-1, 1) * texel_width
        offsetsz = numpy.array(offsetsz, numpy.float32).reshape(-1, 1) * texel_height

        # offsets for each texel quad
        heightmap_vertex_offsets = numpy.concatenate([offsetsx, numpy.zeros((offsetsx.shape[0], offsetsx.shape[1]), dtype=numpy.float32), offsetsz], 1)
        heightmap_vertices += heightmap_vertex_offsets.repeat(6, 0).reshape(-1, 6, 3)

        # apply height data to y values
        heightmap_vertices[:, 0, 1] = heightmap_vertices[:, 5, 1] = height_data[:-1, :-1].reshape(-1)
        heightmap_vertices[:, 1, 1] = height_data[1:, :-1].reshape(-1)
        heightmap_vertices[:, 2, 1] = heightmap_vertices[:, 3, 1] = height_data[1:, 1:].reshape(-1)
        heightmap_vertices[:, 4, 1] = height_data[:-1, 1:].reshape(-1)

        heightmap_indices = numpy.array(numpy.mgrid[0:heightmap_face_count * 3], dtype=numpy.int32).reshape(-1, 3)

        mesh._vertices[0:(heightmap_vertices.size // 3), :] = heightmap_vertices.reshape(-1, 3)
        mesh._indices[0:(heightmap_indices.size // 3), :] = heightmap_indices

        mesh._vertex_count = heightmap_vertices.size // 3
        mesh._face_count = heightmap_indices.size // 3

        geo_width = width_minus_one * texel_width
        geo_height = height_minus_one * texel_height

        # bottom
        mesh.addFace(0, 0, 0, 0, 0, geo_height, geo_width, 0, geo_height)
        mesh.addFace(geo_width, 0, geo_height, geo_width, 0, 0, 0, 0, 0)

        # north and south walls
        for n in range(0, width_minus_one):
            x = n * texel_width
            nx = (n + 1) * texel_width

            hn0 = height_data[0, n]
            hn1 = height_data[0, n + 1]

            hs0 = height_data[height_minus_one, n]
            hs1 = height_data[height_minus_one, n + 1]

            mesh.addFace(x, 0, 0, nx, 0, 0, nx, hn1, 0)
            mesh.addFace(nx, hn1, 0, x, hn0, 0, x, 0, 0)

            mesh.addFace(x, 0, geo_height, nx, 0, geo_height, nx, hs1, geo_height)
            mesh.addFace(nx, hs1, geo_height, x, hs0, geo_height, x, 0, geo_height)

        # west and east walls
        for n in range(0, height_minus_one):
            y = n * texel_height
            ny = (n + 1) * texel_height

            hw0 = height_data[n, 0]
            hw1 = height_data[n + 1, 0]

            he0 = height_data[n, width_minus_one]
            he1 = height_data[n + 1, width_minus_one]

            mesh.addFace(0, 0, y, 0, 0, ny, 0, hw1, ny)
            mesh.addFace(0, hw1, ny, 0, hw0, y, 0, 0, y)

            mesh.addFace(geo_width, 0, y, geo_width, 0, ny, geo_width, he1, ny)
            mesh.addFace(geo_width, he1, ny, geo_width, he0, y, geo_width, 0, y)

        mesh.calculateNormals(fast=True)

        return scene_node
示例#6
0
class MeshBuilder:
    def __init__(self):
        self._mesh_data = MeshData()

    def getData(self):
        return self._mesh_data

    def addLine(self, v0, v1, **kwargs):
        self._mesh_data.addVertex(v0.x, v0.y, v0.z)
        self._mesh_data.addVertex(v1.x, v1.y, v1.z)

        color = kwargs.get("color", None)
        if color:
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 2, color)
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 1, color)

    def addFace(self, v0, v1, v2, **kwargs):
        normal = kwargs.get("normal", None)
        if normal:
            self._mesh_data.addFaceWithNormals(
                                v0.x, v0.y, v0.z,
                                normal.x, normal.y, normal.z,
                                v1.x, v1.y, v1.z,
                                normal.x, normal.y, normal.z,
                                v2.x, v2.y, v2.z,
                                normal.x, normal.y, normal.z
                            )
        else:
            self._mesh_data.addFace(v0.x, v0.y, v0.z, v1.x, v1.y, v1.z, v2.x, v2.y, v2.z)

        color = kwargs.get("color", None)
        if color:
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 3, color)
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 2, color)
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 1, color)

    def addQuad(self, v0, v1, v2, v3, **kwargs):
        self.addFace(v0, v2, v1,
            color = kwargs.get("color"),
            normal = kwargs.get("normal")
        )
        self.addFace(v0, v3, v2,
            color = kwargs.get("color"),
            normal = kwargs.get("normal")
        )

    def addCube(self, **kwargs):
        width = kwargs["width"]
        height = kwargs["height"]
        depth = kwargs["depth"]

        center = kwargs.get("center", Vector(0, 0, 0))

        minW = -width / 2 + center.x
        maxW = width / 2 + center.x
        minH = -height / 2 + center.y
        maxH = height / 2 + center.y
        minD = -depth / 2 + center.z
        maxD = depth / 2 + center.z

        start = self._mesh_data.getVertexCount()

        verts = numpy.asarray([
            [minW, minH, maxD],
            [minW, maxH, maxD],
            [maxW, maxH, maxD],
            [maxW, minH, maxD],
            [minW, minH, minD],
            [minW, maxH, minD],
            [maxW, maxH, minD],
            [maxW, minH, minD],
        ], dtype=numpy.float32)
        self._mesh_data.addVertices(verts)

        indices = numpy.asarray([
            [start, start + 2, start + 1],
            [start, start + 3, start + 2],

            [start + 3, start + 7, start + 6],
            [start + 3, start + 6, start + 2],

            [start + 7, start + 5, start + 6],
            [start + 7, start + 4, start + 5],

            [start + 4, start + 1, start + 5],
            [start + 4, start + 0, start + 1],

            [start + 1, start + 6, start + 5],
            [start + 1, start + 2, start + 6],

            [start + 0, start + 7, start + 3],
            [start + 0, start + 4, start + 7]
        ], dtype=numpy.int32)
        self._mesh_data.addIndices(indices)

        color = kwargs.get("color", None)
        if color:
            vertex_count = self._mesh_data.getVertexCount()
            for i in range(1, 9):
                self._mesh_data.setVertexColor(vertex_count - i, color)

    def addArc(self, **kwargs):
        radius = kwargs["radius"]
        axis = kwargs["axis"]

        max_angle = kwargs.get("angle", math.pi * 2)
        center = kwargs.get("center", Vector(0, 0, 0))
        sections = kwargs.get("sections", 32)
        color = kwargs.get("color", None)

        if axis == Vector.Unit_Y:
            start = axis.cross(Vector.Unit_X).normalize() * radius
        else:
            start = axis.cross(Vector.Unit_Y).normalize() * radius

        angle_increment = max_angle / sections
        angle = 0

        point = start + center
        m = Matrix()
        while angle <= max_angle:
            self._mesh_data.addVertex(point.x, point.y, point.z)
            angle += angle_increment
            m.setByRotationAxis(angle, axis)
            point = start.multiply(m) + center
            self._mesh_data.addVertex(point.x, point.y, point.z)

            if color:
                self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 2, color)
                self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 1, color)

    def addDonut(self, **kwargs):
        inner_radius = kwargs["inner_radius"]
        outer_radius = kwargs["outer_radius"]
        width = kwargs["width"]

        center = kwargs.get("center", Vector(0, 0, 0))
        sections = kwargs.get("sections", 32)
        color = kwargs.get("color", None)

        angle = kwargs.get("angle", 0)
        axis = kwargs.get("axis", Vector.Unit_Y)

        vertices = []
        indices = []
        colors = []

        start = self._mesh_data.getVertexCount()

        for i in range(sections):
            v1 = start + i * 3
            v2 = v1 + 1
            v3 = v1 + 2
            v4 = v1 + 3
            v5 = v1 + 4
            v6 = v1 + 5

            if i+1 >= sections: # connect the end to the start
                v4 = start
                v5 = start + 1
                v6 = start + 2

            theta = i * math.pi / (sections / 2)
            c = math.cos(theta)
            s = math.sin(theta)

            vertices.append( [inner_radius * c, inner_radius * s, 0] )
            vertices.append( [outer_radius * c, outer_radius * s, width] )
            vertices.append( [outer_radius * c, outer_radius * s, -width] )

            indices.append( [v1, v4, v5] )
            indices.append( [v2, v1, v5] )

            indices.append( [v2, v5, v6] )
            indices.append( [v3, v2, v6] )

            indices.append( [v3, v6, v4] )
            indices.append( [v1, v3, v4] )

            if color:
                colors.append( [color.r, color.g, color.b, color.a] )
                colors.append( [color.r, color.g, color.b, color.a] )
                colors.append( [color.r, color.g, color.b, color.a] )

        matrix = Matrix()
        matrix.setByRotationAxis(angle, axis)
        vertices = numpy.asarray(vertices, dtype = numpy.float32)
        vertices = vertices.dot(matrix.getData()[0:3,0:3])
        vertices[:] += center.getData()
        self._mesh_data.addVertices(vertices)

        self._mesh_data.addIndices(numpy.asarray(indices, dtype = numpy.int32))
        self._mesh_data.addColors(numpy.asarray(colors, dtype = numpy.float32))

    def addPyramid(self, **kwargs):
        width = kwargs["width"]
        height = kwargs["height"]
        depth = kwargs["depth"]

        angle = math.radians(kwargs.get("angle", 0))
        axis = kwargs.get("axis", Vector.Unit_Y)

        center = kwargs.get("center", Vector(0, 0, 0))

        minW = -width / 2
        maxW = width / 2
        minD = -depth / 2
        maxD = depth / 2

        start = self._mesh_data.getVertexCount()

        matrix = Matrix()
        matrix.setByRotationAxis(angle, axis)
        verts = numpy.asarray([
            [minW, 0, maxD],
            [maxW, 0, maxD],
            [minW, 0, minD],
            [maxW, 0, minD],
            [0, height, 0]
        ], dtype=numpy.float32)
        verts = verts.dot(matrix.getData()[0:3,0:3])
        verts[:] += center.getData()
        self._mesh_data.addVertices(verts)

        indices = numpy.asarray([
            [start, start + 1, start + 4],
            [start + 1, start + 3, start + 4],
            [start + 3, start + 2, start + 4],
            [start + 2, start, start + 4],
            [start, start + 3, start + 1],
            [start, start + 2, start + 3]
        ], dtype=numpy.int32)
        self._mesh_data.addIndices(indices)

        color = kwargs.get("color", None)
        if color:
            vertex_count = self._mesh_data.getVertexCount()
            for i in range(1, 6):
                self._mesh_data.setVertexColor(vertex_count - i, color)
示例#7
0
    def read(self, file_name):
        result = None
        extension = os.path.splitext(file_name)[1]
        if extension.lower() == self._supported_extension:
            result = SceneNode()
            # The base object of 3mf is a zipped archive.
            archive = zipfile.ZipFile(file_name, "r")
            try:
                root = ET.parse(archive.open("3D/3dmodel.model"))

                # There can be multiple objects, try to load all of them.
                objects = root.findall("./3mf:resources/3mf:object",
                                       self._namespaces)
                if len(objects) == 0:
                    Logger.log(
                        "w",
                        "No objects found in 3MF file %s, either the file is corrupt or you are using an outdated format",
                        file_name)
                    return None

                for object in objects:
                    mesh = MeshData()
                    node = SceneNode()
                    vertex_list = []
                    #for vertex in object.mesh.vertices.vertex:
                    for vertex in object.findall(".//3mf:vertex",
                                                 self._namespaces):
                        vertex_list.append([
                            vertex.get("x"),
                            vertex.get("y"),
                            vertex.get("z")
                        ])
                        Job.yieldThread()

                    triangles = object.findall(".//3mf:triangle",
                                               self._namespaces)

                    mesh.reserveFaceCount(len(triangles))

                    #for triangle in object.mesh.triangles.triangle:
                    for triangle in triangles:
                        v1 = int(triangle.get("v1"))
                        v2 = int(triangle.get("v2"))
                        v3 = int(triangle.get("v3"))
                        mesh.addFace(vertex_list[v1][0], vertex_list[v1][1],
                                     vertex_list[v1][2], vertex_list[v2][0],
                                     vertex_list[v2][1], vertex_list[v2][2],
                                     vertex_list[v3][0], vertex_list[v3][1],
                                     vertex_list[v3][2])
                        Job.yieldThread()

                    #TODO: We currently do not check for normals and simply recalculate them.
                    mesh.calculateNormals()
                    node.setMeshData(mesh)
                    node.setSelectable(True)

                    transformation = root.findall(
                        "./3mf:build/3mf:item[@objectid='{0}']".format(
                            object.get("id")), self._namespaces)
                    if transformation:
                        transformation = transformation[0]

                    if transformation.get("transform"):
                        splitted_transformation = transformation.get(
                            "transform").split()
                        ## Transformation is saved as:
                        ## M00 M01 M02 0.0
                        ## M10 M11 M12 0.0
                        ## M20 M21 M22 0.0
                        ## M30 M31 M32 1.0
                        ## We switch the row & cols as that is how everyone else uses matrices!
                        temp_mat = Matrix()
                        # Rotation & Scale
                        temp_mat._data[0, 0] = splitted_transformation[0]
                        temp_mat._data[1, 0] = splitted_transformation[1]
                        temp_mat._data[2, 0] = splitted_transformation[2]
                        temp_mat._data[0, 1] = splitted_transformation[3]
                        temp_mat._data[1, 1] = splitted_transformation[4]
                        temp_mat._data[2, 1] = splitted_transformation[5]
                        temp_mat._data[0, 2] = splitted_transformation[6]
                        temp_mat._data[1, 2] = splitted_transformation[7]
                        temp_mat._data[2, 2] = splitted_transformation[8]

                        # Translation
                        temp_mat._data[0, 3] = splitted_transformation[9]
                        temp_mat._data[1, 3] = splitted_transformation[10]
                        temp_mat._data[2, 3] = splitted_transformation[11]

                        node.setPosition(
                            Vector(temp_mat.at(0, 3), temp_mat.at(1, 3),
                                   temp_mat.at(2, 3)))

                        temp_quaternion = Quaternion()
                        temp_quaternion.setByMatrix(temp_mat)
                        node.setOrientation(temp_quaternion)

                        # Magical scale extraction
                        scale = temp_mat.getTransposed().multiply(temp_mat)
                        scale_x = math.sqrt(scale.at(0, 0))
                        scale_y = math.sqrt(scale.at(1, 1))
                        scale_z = math.sqrt(scale.at(2, 2))
                        node.setScale(Vector(scale_x, scale_y, scale_z))

                        # We use a different coordinate frame, so rotate.
                        #rotation = Quaternion.fromAngleAxis(-0.5 * math.pi, Vector(1,0,0))
                        #node.rotate(rotation)
                    result.addChild(node)

                    Job.yieldThread()

                #If there is more then one object, group them.
                try:
                    if len(objects) > 1:
                        group_decorator = GroupDecorator()
                        result.addDecorator(group_decorator)
                except:
                    pass
            except Exception as e:
                Logger.log("e", "exception occured in 3mf reader: %s", e)
        return result
示例#8
0
class MeshBuilder:
    ##  Creates a new MeshBuilder with an empty mesh.
    def __init__(self):
        self._mesh_data = MeshData()

    ##  Gets the mesh that was built by this MeshBuilder.
    #
    #   Note that this gets a reference to the mesh. Adding more primitives to
    #   the MeshBuilder will cause the mesh returned by this function to change
    #   as well.
    #
    #   \return A mesh with all the primitives added to this MeshBuilder.
    def getData(self):
        return self._mesh_data

    ##  Adds a 3-dimensional line to the mesh of this mesh builder.
    #
    #   \param v0 One endpoint of the line to add.
    #   \param v1 The other endpoint of the line to add.
    #   \param color (Optional) The colour of the line, if any. If no colour is
    #   provided, the colour is determined by the shader.
    def addLine(self, v0, v1, color = None):
        self._mesh_data.addVertex(v0.x, v0.y, v0.z)
        self._mesh_data.addVertex(v1.x, v1.y, v1.z)

        if color: #Add colours to the vertices, if we have them.
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 2, color)
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 1, color)

    ##  Adds a triangle to the mesh of this mesh builder.
    #
    #   \param v0 The first corner of the triangle.
    #   \param v1 The second corner of the triangle.
    #   \param v2 The third corner of the triangle.
    #   \param normal (Optional) The normal vector for the triangle. If no
    #   normal vector is provided, it will be calculated automatically.
    #   \param color (Optional) The colour for the triangle. If no colour is
    #   provided, the colour is determined by the shader.
    def addFace(self, v0, v1, v2, normal = None, color = None):
        if normal:
            self._mesh_data.addFaceWithNormals(
                                v0.x, v0.y, v0.z,
                                normal.x, normal.y, normal.z,
                                v1.x, v1.y, v1.z,
                                normal.x, normal.y, normal.z,
                                v2.x, v2.y, v2.z,
                                normal.x, normal.y, normal.z
                            )
        else:
            self._mesh_data.addFace(v0.x, v0.y, v0.z, v1.x, v1.y, v1.z, v2.x, v2.y, v2.z) #Computes the normal by itself.

        if color: #Add colours to the vertices if we have them.
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 3, color)
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 2, color)
            self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 1, color)

    ##  Add a quadrilateral to the mesh of this mesh builder.
    #
    #   The quadrilateral will be constructed as two triangles. v0 and v2 are
    #   the two vertices across the diagonal of the quadrilateral.
    #
    #   \param v0 The first corner of the quadrilateral.
    #   \param v1 The second corner of the quadrilateral.
    #   \param v2 The third corner of the quadrilateral.
    #   \param v3 The fourth corner of the quadrilateral.
    #   \param normal (Optional) The normal vector for the quadrilateral. Both
    #   triangles will get the same normal vector, if provided. If no normal
    #   vector is provided, the normal vectors for both triangles are computed
    #   automatically.
    #   \param color (Optional) The colour for the quadrilateral. If no colour
    #   is provided, the colour is determined by the shader.
    def addQuad(self, v0, v1, v2, v3, normal = None, color = None):
        self.addFace(v0, v2, v1,
            color = color,
            normal = normal
        )
        self.addFace(v0, v3, v2, #v0 and v2 are shared with the other triangle!
            color = color,
            normal = normal
        )

    ##  Add a rectangular cuboid to the mesh of this mesh builder.
    #
    #   A rectangular cuboid is a square block with arbitrary width, height and
    #   depth.
    #
    #   \param width The size of the rectangular cuboid in the X dimension.
    #   \param height The size of the rectangular cuboid in the Y dimension.
    #   \param depth The size of the rectangular cuboid in the Z dimension.
    #   \param center (Optional) The position of the centre of the rectangular
    #   cuboid in space. If not provided, the cuboid is placed at the coordinate
    #   origin.
    #   \param color (Optional) The colour for the rectangular cuboid. If no
    #   colour is provided, the colour is determined by the shader.
    def addCube(self, width, height, depth, center = Vector(0, 0, 0), color = None):
        #Compute the actual positions of the planes.
        minW = -width / 2 + center.x
        maxW = width / 2 + center.x
        minH = -height / 2 + center.y
        maxH = height / 2 + center.y
        minD = -depth / 2 + center.z
        maxD = depth / 2 + center.z

        start = self._mesh_data.getVertexCount()

        verts = numpy.asarray([ #All 8 corners.
            [minW, minH, maxD],
            [minW, maxH, maxD],
            [maxW, maxH, maxD],
            [maxW, minH, maxD],
            [minW, minH, minD],
            [minW, maxH, minD],
            [maxW, maxH, minD],
            [maxW, minH, minD],
        ], dtype=numpy.float32)
        self._mesh_data.addVertices(verts)

        indices = numpy.asarray([ #All 6 quads (12 triangles).
            [start, start + 2, start + 1],
            [start, start + 3, start + 2],

            [start + 3, start + 7, start + 6],
            [start + 3, start + 6, start + 2],

            [start + 7, start + 5, start + 6],
            [start + 7, start + 4, start + 5],

            [start + 4, start + 1, start + 5],
            [start + 4, start + 0, start + 1],

            [start + 1, start + 6, start + 5],
            [start + 1, start + 2, start + 6],

            [start + 0, start + 7, start + 3],
            [start + 0, start + 4, start + 7]
        ], dtype=numpy.int32)
        self._mesh_data.addIndices(indices)

        if color: #If we have a colour, add a colour to all of the vertices.
            vertex_count = self._mesh_data.getVertexCount()
            for i in range(1, 9):
                self._mesh_data.setVertexColor(vertex_count - i, color)

    ##  Add an arc to the mesh of this mesh builder.
    #
    #   An arc is a curve that is also a segment of a circle.
    #
    #   \param radius The radius of the circle this arc is a segment of.
    #   \param axis The axis perpendicular to the plane on which the arc lies.
    #   \param angle (Optional) The length of the arc, in radians. If not
    #   provided, the entire circle is used (2 pi).
    #   \param center (Optional) The position of the centre of the arc in space.
    #   If no position is provided, the arc is centred around the coordinate
    #   origin.
    #   \param sections (Optional) The resolution of the arc. The arc is
    #   approximated by this number of line segments.
    #   \param color (Optional) The colour for the arc. If no colour is
    #   provided, the colour is determined by the shader.
    def addArc(self, radius, axis, angle = math.pi * 2, center = Vector(0, 0, 0), sections = 32, color = None):
        #We'll compute the vertices of the arc by computing an initial point and
        #rotating the initial point with a rotation matrix.
        if axis == Vector.Unit_Y:
            start = axis.cross(Vector.Unit_X).normalize() * radius
        else:
            start = axis.cross(Vector.Unit_Y).normalize() * radius

        angle_increment = angle / sections
        current_angle = 0

        point = start + center
        m = Matrix()
        while current_angle <= angle: #Add each of the vertices.
            self._mesh_data.addVertex(point.x, point.y, point.z)
            current_angle += angle_increment
            m.setByRotationAxis(current_angle, axis)
            point = start.multiply(m) + center #Get the next vertex by rotating the start position with a matrix.
            self._mesh_data.addVertex(point.x, point.y, point.z)

            if color: #If we have a colour, add that colour to the new vertex.
                self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 2, color)
                self._mesh_data.setVertexColor(self._mesh_data.getVertexCount() - 1, color)

    ##  Adds a torus to the mesh of this mesh builder.
    #
    #   The torus is the shape of a doughnut. This doughnut is delicious and
    #   moist, but not very healthy.
    #
    #   \param inner_radius The radius of the hole inside the torus. Must be
    #   smaller than outer_radius.
    #   \param outer_radius The radius of the outside of the torus. Must be
    #   larger than inner_radius.
    #   \param width The radius of the torus in perpendicular direction to its
    #   perimeter. This is the "thickness".
    #   \param center (Optional) The position of the centre of the torus. If no
    #   position is provided, the torus will be centred around the coordinate
    #   origin.
    #   \param sections (Optional) The resolution of the torus in the
    #   circumference. The resolution of the intersection of the torus cannot be
    #   changed.
    #   \param color (Optional) The colour of the torus. If no colour is
    #   provided, a colour will be determined by the shader.
    #   \param angle (Optional) An angle of rotation to rotate the torus by, in
    #   radians.
    #   \param axis (Optional) An axis of rotation to rotate the torus around.
    #   If no axis is provided and the angle of rotation is nonzero, the torus
    #   will be rotated around the Y-axis.
    def addDonut(self, inner_radius, outer_radius, width, center = Vector(0, 0, 0), sections = 32, color = None, angle = 0, axis = Vector.Unit_Y):
        vertices = []
        indices = []
        colors = []

        start = self._mesh_data.getVertexCount() #Starting index.

        for i in range(sections):
            v1 = start + i * 3 #Indices for each of the vertices we'll add for this section.
            v2 = v1 + 1
            v3 = v1 + 2
            v4 = v1 + 3
            v5 = v1 + 4
            v6 = v1 + 5

            if i+1 >= sections: # connect the end to the start
                v4 = start
                v5 = start + 1
                v6 = start + 2

            theta = i * math.pi / (sections / 2) #Angle of this piece around torus perimeter.
            c = math.cos(theta) #X-coordinate around torus perimeter.
            s = math.sin(theta) #Y-coordinate around torus perimeter.

            #One vertex on the inside perimeter, two on the outside perimiter (up and down).
            vertices.append( [inner_radius * c, inner_radius * s, 0] )
            vertices.append( [outer_radius * c, outer_radius * s, width] )
            vertices.append( [outer_radius * c, outer_radius * s, -width] )

            #Connect the vertices to the next segment.
            indices.append( [v1, v4, v5] )
            indices.append( [v2, v1, v5] )

            indices.append( [v2, v5, v6] )
            indices.append( [v3, v2, v6] )

            indices.append( [v3, v6, v4] )
            indices.append( [v1, v3, v4] )

            if color: #If we have a colour, add it to the vertices.
                colors.append( [color.r, color.g, color.b, color.a] )
                colors.append( [color.r, color.g, color.b, color.a] )
                colors.append( [color.r, color.g, color.b, color.a] )

        #Rotate the resulting torus around the specified axis.
        matrix = Matrix()
        matrix.setByRotationAxis(angle, axis)
        vertices = numpy.asarray(vertices, dtype = numpy.float32)
        vertices = vertices.dot(matrix.getData()[0:3, 0:3])
        vertices[:] += center.getData() #And translate to the desired position.

        self._mesh_data.addVertices(vertices)
        self._mesh_data.addIndices(numpy.asarray(indices, dtype = numpy.int32))
        self._mesh_data.addColors(numpy.asarray(colors, dtype = numpy.float32))

    ##  Adds a pyramid to the mesh of this mesh builder.
    #
    #   \param width The width of the base of the pyramid.
    #   \param height The height of the pyramid (from base to notch).
    #   \param depth The depth of the base of the pyramid.
    #   \param angle (Optional) An angle of rotation to rotate the pyramid by,
    #   in degrees.
    #   \param axis (Optional) An axis of rotation to rotate the pyramid around.
    #   If no axis is provided and the angle of rotation is nonzero, the pyramid
    #   will be rotated around the Y-axis.
    #   \param center (Optional) The position of the centre of the base of the
    #   pyramid. If not provided, the pyramid will be placed on the coordinate
    #   origin.
    #   \param color (Optional) The colour of the pyramid. If no colour is
    #   provided, a colour will be determined by the shader.
    def addPyramid(self, width, height, depth, angle = 0, axis = Vector.Unit_Y, center = Vector(0, 0, 0), color = None):
        angle = math.radians(angle)

        minW = -width / 2
        maxW = width / 2
        minD = -depth / 2
        maxD = depth / 2

        start = self._mesh_data.getVertexCount() #Starting index.

        matrix = Matrix()
        matrix.setByRotationAxis(angle, axis)
        verts = numpy.asarray([ #All 5 vertices of the pyramid.
            [minW, 0, maxD],
            [maxW, 0, maxD],
            [minW, 0, minD],
            [maxW, 0, minD],
            [0, height, 0]
        ], dtype=numpy.float32)
        verts = verts.dot(matrix.getData()[0:3,0:3]) #Rotate the pyramid around the axis.
        verts[:] += center.getData()
        self._mesh_data.addVertices(verts)

        indices = numpy.asarray([ #Connect the vertices to each other (6 triangles).
            [start, start + 1, start + 4], #The four sides of the pyramid.
            [start + 1, start + 3, start + 4],
            [start + 3, start + 2, start + 4],
            [start + 2, start, start + 4],
            [start, start + 3, start + 1], #The base of the pyramid.
            [start, start + 2, start + 3]
        ], dtype=numpy.int32)
        self._mesh_data.addIndices(indices)

        if color: #If we have a colour, add the colour to each of the vertices.
            vertex_count = self._mesh_data.getVertexCount()
            for i in range(1, 6):
                self._mesh_data.setVertexColor(vertex_count - i, color)
示例#9
0
    def read(self, file_name):
        result = SceneNode()
        # The base object of 3mf is a zipped archive.
        archive = zipfile.ZipFile(file_name, "r")
        try:
            root = ET.parse(archive.open("3D/3dmodel.model"))

            # There can be multiple objects, try to load all of them.
            objects = root.findall("./3mf:resources/3mf:object", self._namespaces)
            if len(objects) == 0:
                Logger.log("w", "No objects found in 3MF file %s, either the file is corrupt or you are using an outdated format", file_name)
                return None

            for entry in objects:
                mesh = MeshData()
                node = SceneNode()
                vertex_list = []
                #for vertex in entry.mesh.vertices.vertex:
                for vertex in entry.findall(".//3mf:vertex", self._namespaces):
                    vertex_list.append([vertex.get("x"), vertex.get("y"), vertex.get("z")])
                    Job.yieldThread()

                triangles = entry.findall(".//3mf:triangle", self._namespaces)

                mesh.reserveFaceCount(len(triangles))

                #for triangle in object.mesh.triangles.triangle:
                for triangle in triangles:
                    v1 = int(triangle.get("v1"))
                    v2 = int(triangle.get("v2"))
                    v3 = int(triangle.get("v3"))
                    mesh.addFace(vertex_list[v1][0],vertex_list[v1][1],vertex_list[v1][2],vertex_list[v2][0],vertex_list[v2][1],vertex_list[v2][2],vertex_list[v3][0],vertex_list[v3][1],vertex_list[v3][2])
                    Job.yieldThread()

                # Rotate the model; We use a different coordinate frame.
                rotation = Matrix()
                rotation.setByRotationAxis(-0.5 * math.pi, Vector(1,0,0))
                mesh = mesh.getTransformed(rotation)

                #TODO: We currently do not check for normals and simply recalculate them.
                mesh.calculateNormals()
                node.setMeshData(mesh)
                node.setSelectable(True)

                transformation = root.findall("./3mf:build/3mf:item[@objectid='{0}']".format(entry.get("id")), self._namespaces)
                if transformation:
                    transformation = transformation[0]
                try:
                    if transformation.get("transform"):
                        splitted_transformation = transformation.get("transform").split()
                        ## Transformation is saved as:
                        ## M00 M01 M02 0.0
                        ## M10 M11 M12 0.0
                        ## M20 M21 M22 0.0
                        ## M30 M31 M32 1.0
                        ## We switch the row & cols as that is how everyone else uses matrices!
                        temp_mat = Matrix()
                        # Rotation & Scale
                        temp_mat._data[0,0] = splitted_transformation[0]
                        temp_mat._data[1,0] = splitted_transformation[1]
                        temp_mat._data[2,0] = splitted_transformation[2]
                        temp_mat._data[0,1] = splitted_transformation[3]
                        temp_mat._data[1,1] = splitted_transformation[4]
                        temp_mat._data[2,1] = splitted_transformation[5]
                        temp_mat._data[0,2] = splitted_transformation[6]
                        temp_mat._data[1,2] = splitted_transformation[7]
                        temp_mat._data[2,2] = splitted_transformation[8]

                        # Translation
                        temp_mat._data[0,3] = splitted_transformation[9]
                        temp_mat._data[1,3] = splitted_transformation[10]
                        temp_mat._data[2,3] = splitted_transformation[11]

                        node.setTransformation(temp_mat)
                except AttributeError:
                    pass # Empty list was found. Getting transformation is not possible

                result.addChild(node)

                Job.yieldThread()

            #If there is more then one object, group them.
            try:
                if len(objects) > 1:
                    group_decorator = GroupDecorator()
                    result.addDecorator(group_decorator)
            except:
                pass
        except Exception as e:
            Logger.log("e" ,"exception occured in 3mf reader: %s" , e)

        return result