from __future__ import unicode_literals import os import numpy as np import tempfile import shutil import deepchem as dc from sklearn.ensemble import RandomForestRegressor from UV_datasets import load_uv ###Load data### np.random.seed(123) shard_size = 2000 num_trials = 5 print("About to load UV data.") UV_tasks, datasets, transformers = load_uv(shard_size=shard_size) train_dataset, valid_dataset, test_dataset = datasets ####################################################### DEBUG print("np.amin(train_dataset.y)") print(np.amin(train_dataset.y)) print("np.amax(train_dataset.y)") print(np.amax(train_dataset.y)) ####################################################### DEBUG print("Number of compounds in train set") print(len(train_dataset)) print("Number of compounds in validation set") print(len(valid_dataset)) print("Number of compounds in test set") print(len(test_dataset))
from __future__ import print_function from __future__ import division from __future__ import unicode_literals import os import tempfile import shutil import numpy as np import deepchem as dc from UV_datasets import load_uv ###Load data### shard_size = 2000 num_trials = 2 print("About to load UV data.") UV_tasks, datasets, transformers = load_uv(shard_size=shard_size) train_dataset, valid_dataset, test_dataset = datasets print("Number of compounds in train set") print(len(train_dataset)) print("Number of compounds in validation set") print(len(valid_dataset)) print("Number of compounds in test set") print(len(test_dataset)) all_results = [] for trial in range(num_trials): ###Create model### n_layers = 3 nb_epoch = 50 model = dc.models.TensorflowMultiTaskRegressor(