def run_transducer(current_block, transducer_width): # apply softmax on the correct outputs transducer_out = softmax( split_logits[current_block][0:transducer_width], axis=2) return transducer_out
def forward(X, W1, b1, W2, b2): Z = np.tanh(X.dot(W1) + b1) return softmax(Z.dot(W2) + b2), Z
def forward(self, X): # Z = relu(X.dot(self.W1) + self.b1) Z = np.tanh(X.dot(self.W1) + self.b1) return softmax(Z.dot(self.W2) + self.b2), Z
def forward(X, W, b): return softmax(X.dot(W) + b)
def forward(self, X): return softmax(X.dot(self.W) + self.b)