def experiment2(filename, ret_val): mmre = [] for _ in xrange(30): method = guo_random(filename) training_data, testing_data = method.generate_test_data(ret_val) assert(len(training_data[0]) == len(training_data[-1])), "Something is wrong" assert(len(testing_data[0]) == len(testing_data[-1])), "Something is wrong" mmre.append(generate_model(training_data, testing_data)) print round(np.mean(mmre) * 100, 3), round(np.std(mmre) * 100, 3),
def experiment1(filename, normalize=None): if normalize is not None: filename = normalize(filename) mmre = [] for _ in xrange(30): print "# ", sys.stdout.flush() method = what(filename) training_data, testing_data = method.generate_test_data() assert (len(training_data[0]) == len( training_data[-1])), "Something is wrong" assert (len(testing_data[0]) == len( testing_data[-1])), "Something is wrong" mmre.append(generate_model(training_data, testing_data)) print round(np.mean(mmre) * 100, 3), round(np.std(mmre) * 100, 3), return len(training_data[0])
def experiment1(filename, normalize=None, feature_weights=False): if normalize is not None: name = filename.split('/')[-1] norm_filename = "./NData/zscore/norm_" + name mmre = [] for _ in xrange(30): if feature_weights is True: filename = add_feature_weights(norm_filename) method = what(filename) training_data, testing_data = method.generate_test_data() assert(len(training_data[0]) == len(training_data[-1])), "Something is wrong" assert(len(testing_data[0]) == len(testing_data[-1])), "Something is wrong" mmre.append(generate_model(training_data, testing_data)) print round(np.mean(mmre) * 100, 3), round(np.std(mmre) * 100, 3), return len(training_data[0])
test_independent.append(map(float, content[ti][:-1])) test_dependent.append(float(content[ti][-1])) assert ( len(test_independent) == len(test_dependent)), "something wrong" train_indexes = range(len(train_independent)) shuffle(train_indexes) selected_points_indep = [ train_independent[i] for i in xrange(len(train_indexes[:number])) ] selected_points_dep = [ train_dependent[i] for i in xrange(len(train_indexes[:number])) ] return [selected_points_indep, selected_points_dep], [test_independent, test_dependent] if __name__ == "__main__": mmre = [] for _ in xrange(30): method = guo_random("./Data/Apache_AllMeasurements.csv") training_data, testing_data = method.generate_test_data() assert (len(training_data[0]) == len( training_data[-1])), "Something is wrong" assert (len(testing_data[0]) == len( testing_data[-1])), "Something is wrong" mmre.append(generate_model(training_data, testing_data)) print np.median(mmre)