study_name = get_file_name(environment.current_study.study_dir) path_len = environment.current_study.image_index - warm_frames_num print("{}:\t len {},\t done: {}".format(study_name, path_len, environment.current_study.finished_successfully)) environment.write_stats() if __name__ == '__main__': # if len(sys.argv) == 1: # print("Error: missing run mode type (hand/fingers)") # sys.exit(1) # # run_mode_type = sys.argv[1] # set_run_config(run_mode_type) sys.stdout = StdoutLog(log_dir, sys.stdout, print_to_log, print_to_stdout) create_dir(checkpoint_dir) if mode == "train": if platform.system() == 'Linux': if mode_type == "hand": print("use hands dataset..") train(["/home/ami/handsTrack/studies/full_hands/17.12.17", "/home/ami/handsTrack/studies/full_hands/18.12.17", "/home/ami/handsTrack/studies/full_hands/19.12.17"], list_of_dirs=True) else: print("use fingers dataset..") train("/home/ami/handsTrack/studies/fingers/20.12.17") else:
image, point = study.next() point = [point.x, point.y] loss, next_state, p, check = sess.run([tracker.loss, tracker.out_state, tracker.predict, tracker.check], feed_dict={tracker.input_frames: image, tracker.target: [point], tracker.keep_prob: keep_prob, tracker.cell_state: current_cell_state, tracker.hidden_state: current_hidden_state}) current_cell_state, current_hidden_state = next_state # print("predict: {}, relative: {}, loss = {}".format(np.array(p), point, loss)) # print(np.mean(current_cell_state - old_state)) # old_state = current_cell_state if __name__ == '__main__': sys.stdout = StdoutLog(log_file, sys.stdout, print_to_log, print_to_stdout) if mode == "train": print("Start training ..") if platform.system() == 'Linux': train("/home/ami/fingersTracking/data/try") #train(["/home/ami/fingersTracking/data/studies", # "/home/ami/fingersTracking/data/studies9.1.18"], list_of_dirs=True) else: train("C:/Users/il115552/Desktop/New folder (6)") if mode == "test": print("Start testing ..") if platform.system() == 'Linux': test("/home/ami/fingersTracking/data/test") else: