示例#1
0
def _DynModel(x, x_glob, u, np, dt, PointAndTangent):
    # This function computes the system evolution. Note that the discretization is deltaT and therefore is needed that
    # dt <= deltaT and ( dt / deltaT) = integer value

    # Vehicle Parameters
    m = 1.98
    lf = 0.125
    lr = 0.125
    Iz = 0.024
    Df = 0.8 * m * 9.81 / 2.0
    Cf = 1.25
    Bf = 1.0
    Dr = 0.8 * m * 9.81 / 2.0
    Cr = 1.25
    Br = 1.0

    # Discretization Parameters
    deltaT = 0.001
    x_next = np.zeros(x.shape[0])
    cur_x_next = np.zeros(x.shape[0])

    # Extract the value of the states
    delta = u[0]
    a = u[1]

    psi = x_glob[3]
    X = x_glob[4]
    Y = x_glob[5]

    vx = x[0]
    vy = x[1]
    wz = x[2]
    epsi = x[3]
    s = x[4]
    ey = x[5]

    # Initialize counter
    i = 0
    while ((i + 1) * deltaT <= dt):
        # Compute tire split angle
        alpha_f = delta - np.arctan2(vy + lf * wz, vx)
        alpha_r = -np.arctan2(vy - lf * wz, vx)

        # Compute lateral force at front and rear tire
        Fyf = 2 * Df * np.sin(Cf * np.arctan(Bf * alpha_f))
        Fyr = 2 * Dr * np.sin(Cr * np.arctan(Br * alpha_r))

        # Propagate the dynamics of deltaT
        x_next[0] = vx + deltaT * (a - 1 / m * Fyf * np.sin(delta) + wz * vy)
        x_next[1] = vy + deltaT * (1 / m *
                                   (Fyf * np.cos(delta) + Fyr) - wz * vx)
        x_next[2] = wz + deltaT * (1 / Iz *
                                   (lf * Fyf * np.cos(delta) - lr * Fyr))
        x_next[3] = psi + deltaT * (wz)
        x_next[4] = X + deltaT * ((vx * np.cos(psi) - vy * np.sin(psi)))
        x_next[5] = Y + deltaT * (vx * np.sin(psi) + vy * np.cos(psi))

        cur = Curvature(s, PointAndTangent)
        cur_x_next[0] = vx + deltaT * (a - 1 / m * Fyf * np.sin(delta) +
                                       wz * vy)
        cur_x_next[1] = vy + deltaT * (1 / m *
                                       (Fyf * np.cos(delta) + Fyr) - wz * vx)
        cur_x_next[2] = wz + deltaT * (1 / Iz *
                                       (lf * Fyf * np.cos(delta) - lr * Fyr))
        cur_x_next[3] = epsi + deltaT * (
            wz - (vx * np.cos(epsi) - vy * np.sin(epsi)) /
            (1 - cur * ey) * cur)
        cur_x_next[4] = s + deltaT * ((vx * np.cos(epsi) - vy * np.sin(epsi)) /
                                      (1 - cur * ey))
        cur_x_next[5] = ey + deltaT * (vx * np.sin(epsi) + vy * np.cos(epsi))

        # Update the value of the states
        psi = x_next[3]
        X = x_next[4]
        Y = x_next[5]

        vx = cur_x_next[0]
        vy = cur_x_next[1]
        wz = cur_x_next[2]
        epsi = cur_x_next[3]
        s = cur_x_next[4]
        ey = cur_x_next[5]

        if (s < 0):
            print("Start Point: ", x, " Input: ", u)
            print("x_next: ", x_next)

        # Increment counter
        i = i + 1

    # Noises
    noise_vx = np.maximum(-0.05, np.minimum(np.random.randn() * 0.01, 0.05))
    noise_vy = np.maximum(-0.1, np.minimum(np.random.randn() * 0.01, 0.1))
    noise_wz = np.maximum(-0.05, np.minimum(np.random.randn() * 0.005, 0.05))

    cur_x_next[0] = cur_x_next[0] + 0.1 * noise_vx
    cur_x_next[1] = cur_x_next[1] + 0.1 * noise_vy
    cur_x_next[2] = cur_x_next[2] + 0.1 * noise_wz

    return cur_x_next, x_next
def _EstimateABC(Controller):
    LinPoints = Controller.LinPoints
    N = Controller.N
    n = Controller.n
    d = Controller.d
    x = Controller.Datax
    u = Controller.Datau
    PointAndTangent = Controller.map.PointAndTangent
    dt = Controller.dt

    Atv = []
    Btv = []
    Ctv = []

    for i in range(0, N + 1):  #从0到N计数,共N+1个点
        MaxNumPoint = 500  # Need to reason on how these points are selected
        x0 = LinPoints[i, :]

        Ai = np.zeros((n, n))
        Bi = np.zeros((n, d))
        Ci = np.zeros((n, 1))

        # =========================
        # ====== Identify vx ======
        h = 2
        stateFeatures = [0, 1, 2]
        inputFeatures = [1]  #输入U(1)表示输出的加速度
        lamb = 0.0
        yIndex = 0
        scaling = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])

        Ai[yIndex,
           stateFeatures], Bi[yIndex,
                              inputFeatures], Ci[yIndex], _ = LocLinReg(
                                  h, x, u, x0, yIndex, stateFeatures,
                                  inputFeatures, scaling, qp, matrix, lamb,
                                  MaxNumPoint)

        # =========================
        # ====== Identify vy ======
        h = 2
        stateFeatures = [0, 1, 2]
        inputFeatures = [0]  # May want to add acceleration here 输入U(0)表示输入的角度
        lamb = 0.0
        yIndex = 1
        # scaling = np.array([[1.0, 0.0, 0.0],
        #                     [0.0, 1.0, 0.0],
        #                     [0.0, 0.0, 1.0]])
        scaling = np.eye(
            len(stateFeatures))  #len返回statefeatures向量的长度,最后生成3*3的单位矩阵

        Ai[yIndex,
           stateFeatures], Bi[yIndex,
                              inputFeatures], Ci[yIndex], _ = LocLinReg(
                                  h, x, u, x0, yIndex, stateFeatures,
                                  inputFeatures, scaling, qp, matrix, lamb,
                                  MaxNumPoint)

        # =========================
        # ====== Identify wz ======
        h = 2
        stateFeatures = [0, 1, 2]
        inputFeatures = [0]  # May want to add acceleration here
        lamb = 0.0
        yIndex = 2
        # scaling = np.array([[1.0, 0.0, 0.0],
        #                     [0.0, 1.0, 0.0],
        #                     [0.0, 0.0, 1.0]])
        scaling = np.eye(len(stateFeatures))

        Ai[yIndex,
           stateFeatures], Bi[yIndex,
                              inputFeatures], Ci[yIndex], _ = LocLinReg(
                                  h, x, u, x0, yIndex, stateFeatures,
                                  inputFeatures, scaling, qp, matrix, lamb,
                                  MaxNumPoint)

        # ===========================
        # ===== Linearization =======
        vx = x0[0]
        vy = x0[1]
        wz = x0[2]
        epsi = x0[3]
        s = x0[4]
        ey = x0[5]

        if s < 0:
            print "s is negative, here the state: \n", LinPoints

        cur = Curvature(s, PointAndTangent)  #S处的曲率
        den = 1 - cur * ey
        # ===========================
        # ===== Linearize epsi ======
        # epsi_{k+1} = epsi + dt * ( wz - (vx * np.cos(epsi) - vy * np.sin(epsi)) / (1 - cur * ey) * cur )
        #depsi_vx、_vy、_wz 分别代表上式对vx、vy、wz的偏导数
        depsi_vx = -dt * np.cos(epsi) / den * cur
        depsi_vy = dt * np.sin(epsi) / den * cur
        depsi_wz = dt
        depsi_epsi = 1 - dt * (-vx * np.sin(epsi) -
                               vy * np.cos(epsi)) / den * cur
        depsi_s = 0  # Because cur = constant
        depsi_ey = -dt * (vx * np.cos(epsi) -
                          vy * np.sin(epsi)) / (den**2) * cur * (-cur)

        Ai[3, :] = [
            depsi_vx, depsi_vy, depsi_wz, depsi_epsi, depsi_s, depsi_ey
        ]
        Ci[3] = epsi + dt * (wz - (vx * np.cos(epsi) - vy * np.sin(epsi)) /
                             (1 - cur * ey) * cur) - np.dot(Ai[3, :], x0)
        #Ci[3]=epsi{k+1}-Ai[3,:]*x0
        # ===========================+  ·
        # ===== Linearize s =========
        # s_{k+1} = s    + dt * ( (vx * np.cos(epsi) - vy * np.sin(epsi)) / (1 - cur * ey) )
        ds_vx = dt * (np.cos(epsi) / den)
        ds_vy = -dt * (np.sin(epsi) / den)
        ds_wz = 0
        ds_epsi = dt * (-vx * np.sin(epsi) - vy * np.cos(epsi)) / den
        ds_s = 1  # + Ts * (Vx * cos(epsi) - Vy * sin(epsi)) / (1 - ey * rho) ^ 2 * (-ey * drho);
        ds_ey = -dt * (vx * np.cos(epsi) - vy * np.sin(epsi)) / (den *
                                                                 2) * (-cur)

        Ai[4, :] = [ds_vx, ds_vy, ds_wz, ds_epsi, ds_s, ds_ey]
        Ci[4] = s + dt * ((vx * np.cos(epsi) - vy * np.sin(epsi)) /
                          (1 - cur * ey)) - np.dot(Ai[4, :], x0)

        # ===========================
        # ===== Linearize ey ========
        # ey_{k+1} = ey + dt * (vx * np.sin(epsi) + vy * np.cos(epsi))
        dey_vx = dt * np.sin(epsi)
        dey_vy = dt * np.cos(epsi)
        dey_wz = 0
        dey_epsi = dt * (vx * np.cos(epsi) - vy * np.sin(epsi))
        dey_s = 0
        dey_ey = 1

        Ai[5, :] = [dey_vx, dey_vy, dey_wz, dey_epsi, dey_s, dey_ey]
        Ci[5] = ey + dt * (vx * np.sin(epsi) + vy * np.cos(epsi)) - np.dot(
            Ai[5, :], x0)

        Atv.append(Ai)
        Btv.append(Bi)
        Ctv.append(Ci)

    return Atv, Btv, Ctv
示例#3
0
    def _DynModel(self, x, x_glob, u, np, dt, PointAndTangent):
        # This function computes the system evolution. Note that the discretization is deltaT and therefore is needed that
        # dt <= deltaT and ( dt / deltaT) = integer value

        # Discretization Parameters
        deltaT = 0.001
        x_next = np.array([0., 0., 0., 0., 0., 0.], dtype=float)
        cur_x_next = np.array([0., 0., 0., 0., 0., 0.], dtype=float)

        # Extract the value of the states
        delta = u[0]
        a = u[1]

        psi = x_glob[3]
        X = x_glob[4]
        Y = x_glob[5]

        vx = x[0]
        vy = x[1]
        wz = x[2]
        epsi = x[3]
        s = x[4]
        ey = x[5]

        # Initialize counter
        i = 0
        while ((i + 1) * deltaT <= dt):
            # Compute tire slip angle
            alpha_f = delta - math.atan2(vy + self.lf * wz, vx)
            alpha_r = -math.atan2(vy - self.lr * wz, vx)

            # Compute lateral force at front and rear tire
            Fyf = self.Df * math.sin(self.Cf * math.atan(self.Bf * alpha_f))
            Fyr = self.Dr * math.sin(self.Cr * math.atan(self.Br * alpha_r))

            # Propagate the dynamics of deltaT
            x_next[0] = vx + deltaT * (a - 1 / self.m * Fyf * math.sin(delta) +
                                       wz * vy)
            x_next[1] = vy + deltaT * (1 / self.m *
                                       (Fyf * math.cos(delta) + Fyr) - wz * vx)
            x_next[2] = wz + deltaT * (
                1 / self.Iz *
                (self.lf * Fyf * math.cos(delta) - self.lr * Fyr))
            x_next[3] = psi + deltaT * (wz)
            x_next[4] = X + deltaT * (
                (vx * math.cos(psi) - vy * math.sin(psi)))
            x_next[5] = Y + deltaT * (vx * math.sin(psi) + vy * math.cos(psi))

            cur = Curvature(s, PointAndTangent)
            cur_x_next[0] = x_next[0]
            cur_x_next[1] = x_next[1]
            cur_x_next[2] = x_next[2]
            cur_x_next[3] = epsi + deltaT * (
                wz - (vx * math.cos(epsi) - vy * math.sin(epsi)) /
                (1 - cur * ey) * cur)
            cur_x_next[4] = s + deltaT * (
                (vx * math.cos(epsi) - vy * math.sin(epsi)) / (1 - cur * ey))
            cur_x_next[5] = ey + deltaT * (vx * math.sin(epsi) +
                                           vy * math.cos(epsi))

            # Update the value of the states
            psi = x_next[3]
            X = x_next[4]
            Y = x_next[5]

            vx = cur_x_next[0]
            vy = cur_x_next[1]
            wz = cur_x_next[2]
            epsi = cur_x_next[3]
            s = cur_x_next[4]
            ey = cur_x_next[5]

            # if (s < 0):
            #     print("Start Point: ", x, " Input: ", u)
            #     print("x_next: ", x_next)

            # Increment counter
            i = i + 1

        # Noises
        noise_vx = np.max([-0.05, np.min([np.random.randn() * 0.01, 0.05])])
        noise_vy = np.max([-0.1, np.min([np.random.randn() * 0.01, 0.1])])
        noise_wz = np.max([-0.05, np.min([np.random.randn() * 0.005, 0.05])])

        cur_x_next[0] = cur_x_next[0] + 0.1 * noise_vx
        cur_x_next[1] = cur_x_next[1] + 0.1 * noise_vy
        cur_x_next[2] = cur_x_next[2] + 0.1 * noise_wz

        return cur_x_next, x_next
示例#4
0
def RegressionAndLinearization(LinPoints, LinInput, usedIt, SS, uSS,
                               LapCounter, MaxNumPoint, qp, n, d, matrix,
                               PointAndTangent, dt, i):

    #i是滚动时域N中遍历的第i个点

    x0 = LinPoints[i, :]

    Ai = np.zeros((n, n))
    Bi = np.zeros((n, d))
    Ci = np.zeros((n, 1))

    # Compute Index to use
    h = 5
    lamb = 0.0
    stateFeatures = [0, 1, 2]
    ConsiderInput = 1

    if ConsiderInput == 1:
        scaling = np.array([[0.1, 0.0, 0.0, 0.0,
                             0.0], [0.0, 1.0, 0.0, 0.0, 0.0],
                            [0.0, 0.0, 1.0, 0.0,
                             0.0], [0.0, 0.0, 0.0, 1.0, 0.0],
                            [0.0, 0.0, 0.0, 0.0, 1.0]])
        xLin = np.hstack((LinPoints[i, stateFeatures], LinInput[i, :]))
    else:
        scaling = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
        xLin = LinPoints[i, stateFeatures]

    indexSelected = []
    K = []
    for ii in usedIt:
        indexSelected_i, K_i = ComputeIndex(h, SS, uSS, LapCounter, ii, xLin,
                                            stateFeatures, scaling,
                                            MaxNumPoint, ConsiderInput)
        indexSelected.append(indexSelected_i)
        K.append(K_i)

    # =========================
    # ====== Identify vx ======
    inputFeatures = [1]
    Q_vx, M_vx = Compute_Q_M(SS, uSS, indexSelected, stateFeatures,
                             inputFeatures, usedIt, np, matrix, lamb, K)

    yIndex = 0
    b = Compute_b(SS, yIndex, usedIt, matrix, M_vx, indexSelected, K, np)
    Ai[yIndex,
       stateFeatures], Bi[yIndex, inputFeatures], Ci[yIndex] = LMPC_LocLinReg(
           Q_vx, b, stateFeatures, inputFeatures, qp)

    # =======================================
    # ====== Identify Lateral Dynamics ======
    inputFeatures = [0]
    Q_lat, M_lat = Compute_Q_M(SS, uSS, indexSelected, stateFeatures,
                               inputFeatures, usedIt, np, matrix, lamb, K)

    yIndex = 1  # vy
    b = Compute_b(SS, yIndex, usedIt, matrix, M_lat, indexSelected, K, np)
    Ai[yIndex,
       stateFeatures], Bi[yIndex, inputFeatures], Ci[yIndex] = LMPC_LocLinReg(
           Q_lat, b, stateFeatures, inputFeatures, qp)

    yIndex = 2  # wz
    b = Compute_b(SS, yIndex, usedIt, matrix, M_lat, indexSelected, K, np)
    Ai[yIndex,
       stateFeatures], Bi[yIndex, inputFeatures], Ci[yIndex] = LMPC_LocLinReg(
           Q_lat, b, stateFeatures, inputFeatures, qp)
    #在速度变量x0[0,1,2]的情况下,位置变量x0[3,4,5]的变化
    # ===========================
    # ===== Linearization =======
    vx = x0[0]
    vy = x0[1]
    wz = x0[2]
    epsi = x0[3]
    s = x0[4]
    ey = x0[5]

    if s < 0:
        print "s is negative, here the state: \n", LinPoints

    startTimer = datetime.datetime.now()  # Start timer for LMPC iteration
    cur = Curvature(s, PointAndTangent)
    cur = Curvature(s, PointAndTangent)
    den = 1 - cur * ey
    # ===========================
    # ===== Linearize epsi ======
    # epsi_{k+1} = epsi + dt * ( wz - (vx * np.cos(epsi) - vy * np.sin(epsi)) / (1 - cur * ey) * cur )
    depsi_vx = -dt * np.cos(epsi) / den * cur
    depsi_vy = dt * np.sin(epsi) / den * cur
    depsi_wz = dt
    depsi_epsi = 1 - dt * (-vx * np.sin(epsi) - vy * np.cos(epsi)) / den * cur
    depsi_s = 0  # Because cur = constant
    depsi_ey = dt * (vx * np.cos(epsi) -
                     vy * np.sin(epsi)) / (den**2) * cur * (-cur)

    Ai[3, :] = [depsi_vx, depsi_vy, depsi_wz, depsi_epsi, depsi_s, depsi_ey]
    Ci[3] = epsi + dt * (wz - (vx * np.cos(epsi) - vy * np.sin(epsi)) /
                         (1 - cur * ey) * cur) - np.dot(Ai[3, :], x0)
    # ===========================
    # ===== Linearize s =========
    # s_{k+1} = s    + dt * ( (vx * np.cos(epsi) - vy * np.sin(epsi)) / (1 - cur * ey) )
    ds_vx = dt * (np.cos(epsi) / den)
    ds_vy = -dt * (np.sin(epsi) / den)
    ds_wz = 0
    ds_epsi = dt * (-vx * np.sin(epsi) - vy * np.cos(epsi)) / den
    ds_s = 1  # + Ts * (Vx * cos(epsi) - Vy * sin(epsi)) / (1 - ey * rho) ^ 2 * (-ey * drho);
    ds_ey = -dt * (vx * np.cos(epsi) - vy * np.sin(epsi)) / (den * 2) * (-cur)

    Ai[4, :] = [ds_vx, ds_vy, ds_wz, ds_epsi, ds_s, ds_ey]
    Ci[4] = s + dt * ((vx * np.cos(epsi) - vy * np.sin(epsi)) /
                      (1 - cur * ey)) - np.dot(Ai[4, :], x0)

    # ===========================
    # ===== Linearize ey ========
    # ey_{k+1} = ey + dt * (vx * np.sin(epsi) + vy * np.cos(epsi))
    dey_vx = dt * np.sin(epsi)
    dey_vy = dt * np.cos(epsi)
    dey_wz = 0
    dey_epsi = dt * (vx * np.cos(epsi) - vy * np.sin(epsi))
    dey_s = 0
    dey_ey = 1

    Ai[5, :] = [dey_vx, dey_vy, dey_wz, dey_epsi, dey_s, dey_ey]
    Ci[5] = ey + dt * (vx * np.sin(epsi) + vy * np.cos(epsi)) - np.dot(
        Ai[5, :], x0)

    endTimer = datetime.datetime.now()
    deltaTimer_tv = endTimer - startTimer

    return Ai, Bi, Ci, indexSelected
示例#5
0
    def solve(self, x0, uOld=np.zeros([0, 0])):
        """Computes control action
        Arguments:
            x0: current state position
        """
        n = self.n
        d = self.d
        SS = self.SS
        #  SS_glob=self.SS_glob
        bcur = self.bcur
        arclen = self.arclen
        arclens = self.arclens
        uSS = self.uSS
        TimeSS = self.TimeSS
        LapCounter = self.LapCounter
        OldInput = self.OldInput
        N = self.N
        dt = self.dt
        it = self.it
        numSS_Points = self.numSS_Points
        numSR_Points = self.numSR_points
        LinPoints = self.LinPoints
        LinInput = self.LinInput
        map = self.map
        PointAndTangent = map.PointAndTangent

        # Select Points from SS

        #    self.LinPoints[4, -1] = self.LinPoints[4, -1] - map.TrackLength
        #判断相似路径
        SR_PointSelectedTot = np.empty((n, 0))

        Succ_BSS_PointSelectedTot = np.empty((n, 0))
        Succ_BuSS_PointSelectedTot = np.empty((d, 0))
        Qfun_SelectedTot = np.empty((0))
        reallyroadarclen = np.empty(numSR_Points)
        maxsspoint = max(TimeSS)
        Mindiff = 100.0  #先整个大的
        jdelerror = []  #由于删除长度不够的列,导致的jdel与实际MINJJ的误差
        MinJarray = range(0, 42)
        for ii in range(0, maxsspoint):
            #剔除长度不够的列
            jdell = 2
            for jdel in range(2, 42):  #jdel是真正的圈次数
                if jdell >= bcur.shape[1]:
                    break
                while jdel in jdelerror:
                    jdel += 1  #有可能jdel+1也在jdelerror里面,因此需要while
                if ii + numSR_Points > TimeSS[jdel] - 1 or ii == LapCounter[
                        jdel]:  #注意最后一个点没办法计算曲率,因此实际的点个数应少1
                    bcur = np.delete(bcur, jdell, axis=1)
                    arclens = np.delete(arclens, jdell, axis=1)
                    jdell = jdell - 1
                    if jdel not in jdelerror:
                        jdelerror.append(jdel)
                        MinJarray.remove(jdel)

                jdell = jdell + 1

            #记忆中的numSR_Points个点的曲率
            curb = bcur[ii:ii + numSR_Points, 2:]

            #当前路径中心线的numSR_Points个点的对应s值及曲率
            nowarclen = arclens[ii:ii + numSR_Points, 2:]  #s值

            if curb.shape[1] == 0:  #如果曲率是空集,则跳出循环
                continue

            nowxs = self.zVector[4]  #修正s值
            #     diffarclens=nowxs-nowarclen[9,:]
            #    nowarclens=nowarclen+diffarclens
            #如果在最开始,zvector[4]很小,使得nowarclens中出现负数,则片段路径的需要以第一个点为基准点
            #   if np.any(nowarclens<0):
            if nowarclen[-1, -1] == 0:  #最后一行最后一列会出现长度是0的情况
                break
            diffarclens = nowxs - nowarclen[0, :]
            nowarclens = nowarclen + diffarclens
            #利用弧长求曲率
            nowcur = np.empty((nowarclen.shape[0], nowarclen.shape[1]))
            for i in range(0, nowarclen.shape[0]):
                for j in range(0, nowarclen.shape[1]):
                    if nowarclens[i, j] < 0:
                        # print nowarclens[i,j]+map.TrackLength
                        nowcur[i, j] = Curvature(
                            nowarclens[i, j] + map.TrackLength,
                            PointAndTangent)
                    else:
                        nowcur[i, j] = Curvature(nowarclens[i, j],
                                                 PointAndTangent)
            #现实路径与过往轨迹的曲率差的范数
            diffcur = nowcur - curb
            diffcurnorm = la.norm(diffcur, 2, axis=0)
            MinJ = np.argmin(diffcurnorm)
            subMinarclens = nowarclens[:, MinJ]  #待定的最小路程
            subnowcur = nowcur[:, MinJ]
            #将从被删除后的矩阵中选取的MinJ变成完整矩阵中的MinJ
            if Mindiff > diffcurnorm[MinJ]:
                MinJJ = MinJ
                MinII = ii
                Mindiff = diffcurnorm[MinJ]

                Minarclens = subMinarclens
                MinJJ = MinJarray[MinJJ + 2]  #原矩阵的索引值
                minnowcur = subnowcur

        # 虚拟路径跟踪轨迹
        similarroadpoint = SS[MinII:MinII + numSR_Points, :, MinJJ]
        self.TSR_PointSelectedTot = similarroadpoint

        # 现实道路中心线
        reallyroadarclen = Minarclens.reshape((numSR_Points, 1))
        self.reallyroadPoint = hstack(
            (hstack((np.zeros(
                (reallyroadarclen.shape[0], 4)), reallyroadarclen)),
             np.zeros((reallyroadarclen.shape[0], 1))))  # 实际道路为只有s量,其余各量为0的点
        #对虚拟路径跟踪轨迹进行插值,先求样条参数
        similarroadpoint_s = SS[MinII:MinII + numSR_Points, 4,
                                MinJJ]  #以s值为参考进行插值
        similarroadpoint_Vx = SS[MinII:MinII + numSR_Points, 0, MinJJ]
        similarroadpoint_Vy = SS[MinII:MinII + numSR_Points, 1, MinJJ]
        similarroadpoint_psi = SS[MinII:MinII + numSR_Points, 3,
                                  MinJJ]  #先找到虚拟路径中心线的各参数
        similarroadpoint_wz = SS[MinII:MinII + numSR_Points, 2, MinJJ]

        similarroadpoint_arclens = Minarclens.reshape(
            (1, numSR_Points))  #arclens其实就是当前坐标系下的s值
        similarroadpoint_ey = SS[MinII:MinII + numSR_Points, 5, MinJJ]

        tck_Vx = interpolate.interp1d(similarroadpoint_s, similarroadpoint_Vx)
        tck_Vy = interpolate.interp1d(similarroadpoint_s, similarroadpoint_Vy)
        tck_wz = interpolate.interp1d(similarroadpoint_s, similarroadpoint_wz)
        tck_psi = interpolate.interp1d(similarroadpoint_s,
                                       similarroadpoint_psi,
                                       'cubic')  #虚拟路径跟踪轨迹的样条插值参数
        tck_arclens = interpolate.interp1d(similarroadpoint_s,
                                           similarroadpoint_arclens, 3)
        tck_y = interpolate.interp1d(similarroadpoint_s, similarroadpoint_ey,
                                     3)

        #开始经验迁移,找到最优轨迹
        Sorigin = SS[MinII, 4, MinJJ]  #相似道路中心线起点的s值
        Send = SS[MinII + numSR_Points - 1, 4, MinJJ]  #相似道路中心线终点的s值
        MinNumPoints = 10000  #先整个大的初始值
        MinNumerror = 10000
        #上一段最优轨迹的最后一个点
        if self.transSSTime[self.TransTime - 1] == 0:
            BestzVector = self.zVector
            BestzVectors = self.zVector
        else:
            BestzVector = self.transSS[self.transSSTime[self.TransTime - 1] -
                                       1, :]
            BestzVectors = self.transSS[self.transSSTime[self.TransTime - 1] -
                                        11:self.transSSTime[self.TransTime -
                                                            1], :]

        for J in range(SS.shape[2] - 1, 1, -1):  #为了快点找到最优轨迹,倒着遍历
            totalpointS = SS[:, 4, J]  #所有点的s值
            TrajectoriesIndex = np.argwhere(
                (totalpointS <= Send) &
                (totalpointS >= Sorigin))  #s值在相似道路中心线范围内的轨迹点索引值
            selectedTrajecties = SS[TrajectoriesIndex[:, 0], :, J]
            difflastpoint = selectedTrajecties - BestzVector
            normselectedtrajecties = la.norm(difflastpoint, 1, axis=1)
            MinNormselectedtrajecties = np.argmin(normselectedtrajecties)
            if MinNormselectedtrajecties - 10 < 0:
                similarLastpoint = selectedTrajecties[
                    MinNormselectedtrajecties, :]
            else:
                similarLastpoint = selectedTrajecties[
                    MinNormselectedtrajecties - 10:MinNormselectedtrajecties +
                    1, :]
        #    if selectedTrajecties.shape[0]>numSR_Points: #待选轨迹不能比沿着路径中心线跑还要慢
        #       continue
        #    print la.norm(self.zVector[0:3]-selectedTrajecties[0,0:3],1)

            if selectedTrajecties.shape[0] + la.norm(
                    similarLastpoint - BestzVectors,
                    1).sum() * 10 > MinNumerror:  #待选轨迹比最优轨迹还慢的也扔了吧,同时保证速度变化慢
                continue
            if selectedTrajecties.shape[
                    0] < numSS_Points / 2 + 1:  #待选轨迹如果太快,会导致点数过少无法建立ss集,加1是为了划分当前SS集与下一步的SS集
                continue
            #X1表示待迁移的轨迹点,X2表示虚拟道路中心线上的点
            TransX1 = selectedTrajecties[:, :]
            TransX2_s = TransX1[:, 4]

            #找到X2
            #   TransX2_Vx = tck_Vx(TransX2_s)
            #   TransX2_Vy = tck_Vy(TransX2_s)
            #  TransX2_WZ = tck_wz(TransX2_s)
            TransX2_epsi = tck_psi(TransX2_s)
            TransX2_arclens = tck_arclens(TransX2_s)
            TransX2_ey = tck_y(TransX2_s)
            #迁移X1
            TransX1_ey = (TransX1[:, 5] - TransX2_ey) * np.cos(TransX2_epsi)
            if max(TransX1_ey) > map.halfWidth:  #删除大于路宽约束的点
                continue
            TransX1_s = TransX2_arclens + (TransX1[:, 5] -
                                           TransX2_ey) * np.sin(
                                               TransX2_epsi)  #先是按原来轨迹计算的s值你
            TransX1_epsi = TransX1[:, 3] - TransX2_epsi
            # X1处输入变量
            TransU1 = uSS[TrajectoriesIndex[:, 0], :, J]
            #     TransX1_WZ=TransX1[:,2]
            #    TransX1_Vy=TransX1[:,1]*np.cos(TransX2_epsi)-TransX1[:, 0] * np.sin(TransX2_epsi)
            #    TransX1_Vx = TransX1[:, 0] * np.cos(TransX2_epsi)+TransX1[:, 1] * np.sin(TransX2_epsi)

            MinNumPoints = selectedTrajecties.shape[0]
            MinNumerror = MinNumPoints + la.norm(
                similarLastpoint - BestzVectors, 1).sum() * 10
            BestSS_PointSelect = np.empty((n, MinNumPoints))
            BestSS_PointSelect[0:3, :] = TransX1[:, 0:3].T
            BestSS_PointSelect[3, :] = TransX1_epsi
            BestSS_PointSelect[4, :] = TransX1_s
            BestSS_PointSelect[5, :] = TransX1_ey
            #检验插值
            chazhi_PointSelect = np.empty((n, MinNumPoints))
            chazhi_PointSelect[3, :] = TransX2_epsi
            chazhi_PointSelect[4, :] = TransX2_arclens
            chazhi_PointSelect[5, :] = TransX2_ey
            BestbeforePoint = TransX1  #迁移前的轨迹

        TransTime = self.TransTime  #仿真的第几段路段,在Virtualsimulater程序中每次加1
        transSSTime = self.transSSTime[
            TransTime - 1]  #该路段内最优轨迹总共有几个点,self.transSSTime是统计所有transSSTime的集合
        #    if transSSTime+MinNumPoints >= self.transSS.shape[0] :
        #        self.transSS[transSSTime:, :] = BestSS_PointSelect[:, :self.transSS.shape[0]-transSSTime].T   #防止超过最大仿真时间
        #       self.BestbeforePoint[transSSTime: , :] = BestbeforePoint[:, :self.transSS.shape[0]-transSSTime]
        #       self.chazhi_PointSelect[transSSTime:, :] = chazhi_PointSelect[:, :self.transSS.shape[0]-transSSTime].T
        #       self.overflag=1 #超出最大仿真时间了

        self.transSS[transSSTime:transSSTime +
                     MinNumPoints, :] = BestSS_PointSelect.T  #将迁移后的最优轨迹加入新的ss集

        self.transuSS[transSSTime:transSSTime + MinNumPoints, :] = TransU1
        self.BestbeforePoint[transSSTime:transSSTime +
                             MinNumPoints, :] = BestbeforePoint
        self.chazhi_PointSelect[transSSTime:transSSTime +
                                MinNumPoints, :] = chazhi_PointSelect.T
        self.transSSTime[
            TransTime] = transSSTime + MinNumPoints  #每一段结束后总共共多少个点(统计所有圈数)
        self.tSSparaTime[self.TranslapTime, self.overlap] = self.tSSparaTime[
            self.TranslapTime - 1,
            self.overlap] + MinNumPoints  #每一段结束后,当前圈数总共有多少个点
        self.TranslapTime = self.TranslapTime + 1  #TranslapTime表示这一圈的第几小段轨迹

        self.zVector = self.reallyroadPoint[10, :]
        #快到达终点处时处理
        if (self.zVector[4] > map.TrackLength):  #为了制造圈与圈之间的起始点差,到终点时让经验轨迹倒退几步
            # houtui=int(np.floor(self.reallyroadPoint.shape[0]/3))  #到终点时后退1/3
            # self.zVector = self.reallyroadPoint[-houtui, :]- map.TrackLength
            self.zVector[4] = self.zVector[4] - map.TrackLength
            self.tSSlapsTime[self.overlap] = self.transSSTime[
                TransTime]  # 第overlap圈的时候,总共有多少个点(所有圈数)
            self.TranslapTime = 0
            #   self.passway=1    #防止后退完回到终点再次被后退
            print "迁移第%d圈" % (self.overlap)
            self.overlap = self.overlap + 1