import Utility.network_training as Tr parameters = {} parameters['learning_rate'] = 0.005 parameters['optimizer'] = 'adam' parameters['activation'] = 'relu' parameters['dropout'] = 0.015 parameters['rnn_type'] = 'lstm' parameters['rnn_size'] = 230 parameters['rnn_activation'] = 'tanh' parameters['rnn_dropout'] = 0.125 parameters['last_activation'] = 'relu' parameters['dense_layers'] = [139, 486, 152, 79, 61, 0, 0, 0, 0, 0] #parameters[''] = eul, crp, das28 = Bu.load_data('FixedTraining') eul = eul.reshape(eul.shape[0], eul.shape[1], 1) crp = (crp - np.mean(crp)) / np.std(crp) cbs = Tr.get_callbacks() epochs = 30 batch_size = 32 dir = r'D:\WindowsFolders\Documents\GitHub\BachelorRetraining\Training\TrainModel\TrainModel\models' input_eular = keras.layers.Input(shape=(eul.shape[1], 1), dtype='float32', name='input_eular') input_crp = keras.layers.Input(shape=(1, ), dtype='float32', name='input_crp')
pg.add_value('dropout', default_value=0.1) pg.add_value('rnn_type', default_value='lstm') pg.add_value('rnn_size', default_value=230) pg.add_value('rnn_activation', default_value='tanh') pg.add_value('rnn_dropout', default_value=0.1) pg.add_value('last_activation', default_value='linear') og_param = pg.sample(1, unique=True)[0] parameters = [] for output_act in ['linear', 'relu', 'leaky_relu']: param = dict(og_param) param['last_activation'] = output_act parameters.append(param) x1, x2, y = Bu.load_data('FixedTraining') cvs = Bu.get_cross_validation(x1, x2, y, n_cv) cbs = Tr.get_callbacks(plat=True, es=True) head = ['iteration', 'seed'] head += pg.get_head() head += ['last_perf', 'min_perf', 'time'] print(head) log = Bu.CSVWriter(filename, head=head) model_path = 'current_weights.h5' while True: seed = randint(0, 2**32-1)
preds = preds.reshape(len(x1), ) diff = preds - y return preds, diff def getCatIndex(ar): cats = [(0, 2.6), (2.6, 3.2), (3.2, 5.1), (5.1, 10)] res = [] for v in ar: for i in range(0, len(cats)): if v >= cats[i][0] and v < cats[i][1]: res.append(i) return res eul, crp, das = Bu.load_data('FixedTesting') eul = eul.reshape(eul.shape[0], eul.shape[1], 1) _, train_crp, _ = Bu.load_data('FixedTraining') crp = (crp - np.mean(train_crp)) / np.std(train_crp) dir = r'D:\WindowsFolders\Documents\GitHub\BachelorRetraining\Training\Test\Test' all_preds = [] mses = [] maes = [] for i, file in enumerate(os.listdir(dir + r'\\models')): model = load_model('models/' + file) preds, diff = testModel(model, eul, crp, das) all_preds.append(preds)