def collect_svc(name, most_similar_name, indices): svc_results = [] data = dataTools.AuthorshipOneVsOne(name, most_similar_name, ratioTrain, ratioValid, dataPath) logging.info('Training SVM on {0} v.s. {1}'.format(name, most_similar_name)) for split_n in range(NO_OF_SPLITS): data.get_split(name, most_similar_name, ratioTrain, ratioValid) data.reduce_dim(indices) start = time.perf_counter() svc = linear_class.train_svc(data) end = time.perf_counter() svc_result = evaluate_svc(svc, data) svc_result['time'] = start - end svc_results.append(svc_result) logging.info( 'SPLIT {0}: SVM results successfully collected: {1}'.format( split_n, svc_result)) return svc_results
def collect_gcnn(name, most_similar_name, phi, ind): gcnn_results = [] data = dataTools.AuthorshipOneVsOne(name, most_similar_name, ratioTrain, ratioValid, dataPath) logging.info('Training GCNN on {0} v.s. {1}'.format( name, most_similar_name)) h_params = ClusterUtils.load_best_hyperparams(name) for split_n in range(NO_OF_SPLITS): data.get_split(name, most_similar_name, ratioTrain, ratioValid) data.reduce_dim(ind) start = time.perf_counter() gcnn = train_helper.train_net(data, h_params, phi=phi) end = time.perf_counter() gcnn_eval = evaluate_gcnn(gcnn, data) gcnn_eval['time'] = start - end gcnn_results.append(gcnn_eval) logging.info( 'SPLIT {0}: GCNN results successfully collected: {1}'.format( split_n, gcnn_results[split_n])) return gcnn_results
def collect_gcnn(name, most_similar_name): gcnn_results = [] data = dataTools.AuthorshipOneVsOne(name, most_similar_name, ratioTrain, ratioValid, dataPath) logging.info('Training GCNN on {0} v.s. {1}'.format(name, most_similar_name)) h_params = ClusterUtils.load_best_hyperparams(name) for split_n in range(NO_OF_SPLITS): data.get_split(name, most_similar_name, ratioTrain, ratioValid) gcnn = train_helper.train_net(data, h_params) gcnn_results.append(evaluate_gcnn(gcnn, data)) logging.info('SPLIT {0}: GCNN results successfully collected: {1}'.format(split_n, gcnn_results[split_n])) return gcnn_results