示例#1
0
def run(config):

  # Update the config dict as necessary
  # This is for convenience, to add settings derived from the user-specified
  # configuration into the config-dict (e.g. inferring the number of classes
  # and size of the images from the dataset, passing in a pytorch object
  # for the activation specified as a string)
  config['resolution'] = utils.imsize_dict[config['dataset']]
  config['n_classes'] = utils.nclass_dict[config['dataset']]
  config['G_activation'] = utils.activation_dict[config['G_nl']]
  config['D_activation'] = utils.activation_dict[config['D_nl']]
  # By default, skip init if resuming training.
  if config['resume']:
    print('Skipping initialization for training resumption...')
    config['skip_init'] = True
  config = vae_utils.update_config_roots(config)
  device = 'cuda'
  
  # Seed RNG
  utils.seed_rng(config['seed'])

  # Prepare root folders if necessary
  utils.prepare_root(config)

  # Setup cudnn.benchmark for free speed
  torch.backends.cudnn.benchmark = True

  # Import the model--this line allows us to dynamically select different files.
  experiment_name = (config['experiment_name'] if config['experiment_name']
                       else utils.name_from_config(config))
  print('Experiment name is %s' % experiment_name)

  # Next, build the model
  E = Ex.Extractor(**config).to(device)

  # If using EMA, prepare it
  if config['ema']:
    print('Preparing EMA for E with decay of {}'.format(config['ema_decay']))
    E_ema = Ex.Extractor(**{**config, 'skip_init':True,
                            'no_optim': True}).to(device)
    ema = utils.ema(E, E_ema, config['ema_decay'], config['ema_start'])
  else:
    E_ema, ema = None, None

  print(E)
  print('Number of params in E: {}'.format(
    sum([p.data.nelement() for p in E.parameters()])))
  # Prepare state dict, which holds things like epoch # and itr #
  state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0,
                'best_IS': 0, 'best_FID': 999999, 'config': config}

  # If loading from a pre-trained model, load weights
  if config['resume']:
    print('Loading weights...')
    vae_utils.load_weights([E], state_dict,
                           config['weights_root'], experiment_name,
                           config['load_weights'] if config['load_weights'] else None,
                           [E_ema] if config['ema'] else None)

  # If parallel, parallelize the GD module
  if config['parallel']:
    E_parallel = nn.DataParallel(E)
    if config['cross_replica']:
      patch_replication_callback(E_parallel)

  # Prepare loggers for stats; metrics holds test metrics,
  # lmetrics holds any desired training metrics.
  test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'],
                                            experiment_name)
  train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name)
  print('Inception Metrics will be saved to {}'.format(test_metrics_fname))
  test_log = utils.MetricsLogger(test_metrics_fname,
                                 reinitialize=(not config['resume']))
  print('Training Metrics will be saved to {}'.format(train_metrics_fname))
  train_log = utils.MyLogger(train_metrics_fname,
                             reinitialize=(not config['resume']),
                             logstyle=config['logstyle'])
  # Write metadata
  utils.write_metadata(config['logs_root'], experiment_name, config, state_dict)
  # Prepare data; the Discriminator's batch size is all that needs to be passed
  # to the dataloader, as G doesn't require dataloading.
  # Note that at every loader iteration we pass in enough data to complete
  # a full D iteration (regardless of number of D steps and accumulations)
  D_batch_size = (config['batch_size'] * 8)
  loaders = mini_datasets.get_data_loaders(**{**config, 'batch_size': D_batch_size,
                                              'start_itr': state_dict['itr']})

  # Prepare noise and randomly sampled label arrays
  # Allow for different batch sizes in G
  G_batch_size = max(config['G_batch_size'], config['batch_size'])
  # Loaders are loaded, prepare the training function
  if config['which_train_fn'] == 'GAN':
    train = Ex.Extractor_training_function(E, ema, E_parallel, state_dict, config)
  # Else, assume debugging and use the dummy train fn
  else:
    train = train_fns.dummy_training_function()

  print('Beginning training at epoch %d...' % state_dict['epoch'])
  # Train for specified number of epochs, although we mostly track G iterations.
  for epoch in range(state_dict['epoch'], config['num_epochs']):    
    # Which progressbar to use? TQDM or my own?
    if config['pbar'] == 'mine':
      pbar = utils.progress(zip(loaders[0], loaders[1]), displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta')
    else:
      pbar = tqdm(zip(loaders[0], loaders[1]))
    for i, (lx, ly, ux, uy) in enumerate(pbar):
      x = torch.cat([lx, ux], 0)
      y = torch.cat([ly, uy])
      # Increment the iteration counter
      state_dict['itr'] += 1
      # Make sure G and D are in training mode, just in case they got set to eval
      # For D, which typically doesn't have BN, this shouldn't matter much.
      E.train()
      ## Last night we process here!
      if config['ema']:
        E_ema.train()
      if config['D_fp16']:
        x, y = x.to(device).half(), y.to(device)
      else:
        x, y = x.to(device), y.to(device)
      metrics = train(x, y)
      train_log.log(itr=int(state_dict['itr']), **metrics)
      
      # Every sv_log_interval, log singular values
      if (config['sv_log_interval'] > 0) and (not (state_dict['itr'] % config['sv_log_interval'])):
        train_log.log(itr=int(state_dict['itr']),
                      **{**utils.get_SVs(G, 'G'), **utils.get_SVs(D, 'D')})

      # If using my progbar, print metrics.
      if config['pbar'] == 'mine':
          print(', '.join(['itr: %d' % state_dict['itr']] 
                           + ['%s : %+4.3f' % (key, metrics[key])
                           for key in metrics]), end=' ')

      # Save weights and copies as configured at specified interval
      if not (state_dict['itr'] % config['save_every']):
        if config['G_eval_mode']:
          print('Switchin G to eval mode...')
          G.eval()
          if config['ema']:
            G_ema.eval()
        train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y,
                                  state_dict, config, experiment_name)

      # Test every specified interval
      if not (state_dict['itr'] % config['test_every']):
        if config['G_eval_mode']:
          print('Switchin G to eval mode...')
          G.eval()
        train_fns.test(G, D, G_ema, z_, y_, state_dict, config, sample,
                       get_inception_metrics, experiment_name, test_log)
    # Increment epoch counter at end of epoch
    state_dict['epoch'] += 1
示例#2
0
def run(config):
    # Update the config dict as necessary
    # This is for convenience, to add settings derived from the user-specified
    # configuration into the config-dict (e.g. inferring the number of classes
    # and size of the images from the dataset, passing in a pytorch object
    # for the activation specified as a string)
    config['resolution'] = utils.imsize_dict[config['dataset']]
    config['n_classes'] = utils.nclass_dict[config['dataset']]
    config['G_activation'] = utils.activation_dict[config['G_nl']]
    config['D_activation'] = utils.activation_dict[config['D_nl']]
    # By default, skip init if resuming training.
    if config['resume']:
        print('Skipping initialization for training resumption...')
        config['skip_init'] = True
    config = vae_utils.update_config_roots(config)
    device = 'cuda'

    # Seed RNG
    utils.seed_rng(config['seed'])

    # Prepare root folders if necessary
    utils.prepare_root(config)

    # Setup cudnn.benchmark for free speed
    torch.backends.cudnn.benchmark = True

    # Import the model--this line allows us to dynamically select different files.
    model = import_module('Network.' + config['model'])
    experiment_name = (config['experiment_name'] if config['experiment_name']
                       else utils.name_from_config(config))
    print('Experiment name is %s' % experiment_name)

    # Next, build the model
    G = model.Generator(**config).to(device)
    D = model.Discriminator(**config).to(device)
    L = model.LatentBinder(**config).to(device)
    I = Invert.Invert(**config).to(device)
    E = Encoder.Encoder(**config).to(device)
    Decoder = model.Decoder(I, E, G, D, L).to(device)

    # If using EMA, prepare it
    if config['ema']:
        print('Preparing EMA for G with decay of {}'.format(
            config['ema_decay']))
        G_ema = model.Generator(name='G_ema',
                                **{
                                    **config, 'skip_init': True,
                                    'no_optim': True
                                }).to(device)
        gema = utils.ema(G, G_ema, config['ema_decay'], config['ema_start'])
        print('Preparing EMA for Invert with decay of {}'.format(
            config['ema_decay']))
        I_ema = Invert.Invert(name='Invert_ema',
                              **{
                                  **config, 'skip_init': True,
                                  'no_optim': True
                              }).to(device)
        iema = utils.ema(I, I_ema, config['ema_decay'], config['ema_start'])
        print('Preparing EMA for Encoder with decay of {}'.format(
            config['ema_decay']))
        E_ema = Encoder.Encoder(name='Encoder_ema',
                                **{
                                    **config, 'skip_init': True,
                                    'no_optim': True
                                }).to(device)
        eema = utils.ema(E, E_ema, config['ema_decay'], config['ema_start'])
    else:
        G_ema, gema, I_ema, iema, E_ema, eema = None, None, None, None, None, None

    # FP16? We should also half other components of Deocer, but as we will not use FP16, we simply
    # not implement this.
    if config['G_fp16']:
        print('Casting G to float16...')
        G = G.half()
        if config['ema']:
            G_ema = G_ema.half()
    if config['D_fp16']:
        print('Casting D to fp16...')
        D = D.half()
        # Consider automatically reducing SN_eps?
    print(G)
    print(D)
    print(I)
    print(E)
    print(L)
    print(
        'Number of params in G: {} D: {} Invert: {} Encoder: {} LatentBinder: {}'
        .format(*[
            sum([p.data.nelement() for p in net.parameters()])
            for net in [G, D, I, E, L]
        ]))
    # Prepare state dict, which holds things like epoch # and itr #
    state_dict = {
        'itr': 0,
        'epoch': 0,
        'save_num': 0,
        'save_best_num': 0,
        'best_IS': 0,
        'best_FID': 999999,
        'config': config
    }

    # If loading from a pre-trained model, load weights
    if config['resume']:
        print('Loading weights...')
        vae_utils.load_weights(
            [G, D, I, E, L], state_dict, config['weights_root'],
            experiment_name,
            config['load_weights'] if config['load_weights'] else None,
            [G_ema, I_ema, E_ema] if config['ema'] else None)

    # If parallel, parallelize the GD module
    if config['parallel']:
        Decoder = nn.DataParallel(Decoder)
        if config['cross_replica']:
            patch_replication_callback(Decoder)

    # Prepare loggers for stats; metrics holds test metrics,
    # lmetrics holds any desired training metrics.
    test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'],
                                              experiment_name)
    train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name)
    print('Inception Metrics will be saved to {}'.format(test_metrics_fname))
    test_log = utils.MetricsLogger(test_metrics_fname,
                                   reinitialize=(not config['resume']))
    print('Training Metrics will be saved to {}'.format(train_metrics_fname))
    train_log = utils.MyLogger(train_metrics_fname,
                               reinitialize=(not config['resume']),
                               logstyle=config['logstyle'])
    # Write metadata
    utils.write_metadata(config['logs_root'], experiment_name, config,
                         state_dict)
    # Prepare data; the Discriminator's batch size is all that needs to be passed
    # to the dataloader, as G doesn't require dataloading.
    # Note that at every loader iteration we pass in enough data to complete
    # a full D iteration (regardless of number of D steps and accumulations)
    D_batch_size = (config['batch_size'] * config['num_D_steps'] *
                    config['num_D_accumulations'])
    loaders = vae_utils.get_minidata_loaders(**{
        **config, 'batch_size': D_batch_size,
        'start_itr': state_dict['itr']
    })

    # Prepare inception metrics: FID and IS
    get_inception_metrics = inception_utils.prepare_inception_metrics(
        config['dataset'], config['parallel'], config['data_root'],
        config['no_fid'])
    # Prepare vgg for recon_loss, considering loss is parallel, it's no need for vgg to be parallel
    # vgg is pretrained on imagenet, so we cannot use it.
    # vgg = load_vgg_from_local(parallel=False)
    # Prepare KNN for evaluating encoder.
    # KNN = vae_utils.KNN(loaders[0], anchor_num=10, K=4)
    KNN = None
    # Prepare noise and randomly sampled label arrays
    # Allow for different batch sizes in G
    G_batch_size = max(config['G_batch_size'], config['batch_size'])
    z_, y_ = utils.prepare_z_y(G_batch_size,
                               G.dim_z,
                               config['n_classes'],
                               device=device,
                               fp16=config['G_fp16'])
    # Prepare fake labels for encoder.
    _, ey_ = utils.prepare_z_y(G_batch_size,
                               G.dim_z,
                               config['n_classes'],
                               device=device,
                               fp16=config['G_fp16'])
    # Prepare a fixed z & y to see individual sample evolution throghout training
    fixed_z, fixed_y = utils.prepare_z_y(G_batch_size,
                                         G.dim_z,
                                         config['n_classes'],
                                         device=device,
                                         fp16=config['G_fp16'])
    fixed_x = vae_utils.prepare_fixed_x(loaders[0], G_batch_size, config,
                                        experiment_name, device)
    fixed_z.sample_()
    fixed_y.sample_()
    # Loaders are loaded, prepare the training function
    if config['which_train_fn'] == 'GAN':
        train = train_vae_fns.VAE_training_function(G, D, E, I, L, Decoder, z_,
                                                    y_, ey_,
                                                    [gema, iema, eema],
                                                    state_dict, config)

    # Else, assume debugging and use the dummy train fn
    else:
        train = train_vae_fns.dummy_training_function()
    # Prepare Sample function for use with inception metrics
    sample = functools.partial(
        vae_utils.sample,
        Invert=(I_ema if config['ema'] and config['use_ema'] else I),
        G=(G_ema if config['ema'] and config['use_ema'] else G),
        z_=z_,
        y_=y_,
        config=config)

    print('Beginning training at epoch %d...' % state_dict['epoch'])
    # Train for specified number of epochs, although we mostly track G iterations.
    for epoch in range(state_dict['epoch'], config['num_epochs']):
        # Which progressbar to use? TQDM or my own?
        if config['pbar'] == 'mine':
            pbar = utils.progress(loaders[0],
                                  displaytype='s1k' if
                                  config['use_multiepoch_sampler'] else 'eta')
        else:
            pbar = tqdm(loaders[0])
        for i, (x, y) in enumerate(pbar):
            # Increment the iteration counter
            state_dict['itr'] += 1
            # Make sure G and D are in training mode, just in case they got set to eval
            # For D, which typically doesn't have BN, this shouldn't matter much.
            G.train()
            D.train()
            I.train()
            E.train()
            L.train()
            if config['ema']:
                G_ema.train()
                I_ema.train()
                E_ema.train()
            if config['D_fp16']:
                x, y = x.to(device).half(), y.to(device)
            else:
                x, y = x.to(device), y.to(device)
            metrics = train(x)
            train_log.log(itr=int(state_dict['itr']), **metrics)

            # Every sv_log_interval, log singular values
            if (config['sv_log_interval'] > 0) and (
                    not (state_dict['itr'] % config['sv_log_interval'])):
                train_log.log(itr=int(state_dict['itr']),
                              **{
                                  **utils.get_SVs(G, 'G'),
                                  **utils.get_SVs(D, 'D'),
                                  **utils.get_SVs(I, 'Invert'),
                                  **utils.get_SVs(E, 'Encoder'),
                                  **utils.get_SVs(L, 'LatentBinder')
                              })

            # If using my progbar, print metrics.
            if config['pbar'] == 'mine':
                print(', '.join(
                    ['itr: %d' % state_dict['itr']] +
                    ['%s : %+4.3f' % (key, metrics[key]) for key in metrics]),
                      end=' ')

            # Save weights and copies as configured at specified interval
            if not (state_dict['itr'] % config['save_every']):
                if config['G_eval_mode']:
                    print('Switchin G to eval mode...')
                    G.eval()
                    I.eval()
                    E.eval()
                    if config['ema']:
                        G_ema.eval()
                        I_ema.eval()
                        E_ema.eval()
                train_vae_fns.save_and_sample(G, D, E, I, L, G_ema, I_ema,
                                              E_ema, z_, y_, fixed_z, fixed_y,
                                              fixed_x, state_dict, config,
                                              experiment_name)

            # Test every specified interval
            if not (state_dict['itr'] % config['test_every']):
                if config['G_eval_mode']:
                    print('Switchin G to eval mode...')
                    G.eval()
                    I.eval()
                    E.eval()
                train_vae_fns.test(G, D, E, I, L, KNN, G_ema, I_ema, E_ema, z_,
                                   y_, state_dict, config, sample,
                                   get_inception_metrics, experiment_name,
                                   test_log)
        # Increment epoch counter at end of epoch
        state_dict['epoch'] += 1
示例#3
0
def run(config):
    # Update the config dict as necessary
    # This is for convenience, to add settings derived from the user-specified
    # configuration into the config-dict (e.g. inferring the number of classes
    # and size of the images from the dataset, passing in a pytorch object
    # for the activation specified as a string)
    config['resolution'] = utils.imsize_dict[config['dataset']]
    config['n_classes'] = utils.nclass_dict[config['dataset']]
    config['G_activation'] = utils.activation_dict[config['G_nl']]
    config['D_activation'] = utils.activation_dict[config['D_nl']]
    # By default, skip init if resuming training.
    if config['resume']:
        print('Skipping initialization for training resumption...')
        config['skip_init'] = True
    config = vae_utils.update_config_roots(config)
    device = 'cuda'

    # Seed RNG
    utils.seed_rng(config['seed'])

    # Prepare root folders if necessary
    utils.prepare_root(config)

    # Setup cudnn.benchmark for free speed
    torch.backends.cudnn.benchmark = True

    experiment_name = (config['experiment_name'] if config['experiment_name']
                       else utils.name_from_config(config))
    print('Experiment name is %s' % experiment_name)

    # Next, build the model
    G = BigGAN.Generator(**{
        **config, 'skip_init': True,
        'no_optim': True
    }).to(device)
    D = BigGAN.Discriminator(**{
        **config, 'skip_init': True,
        'no_optim': True
    }).to(device)
    E = Encoder(**config).to(device)
    vgg_alter = Encoder(**{
        **config, 'skip_init': True,
        'no_optim': True,
        'name': 'Vgg_alter'
    }).to(device)
    load_pretrained(G, config['pretrained_G_dir'])
    load_pretrained(D, config['pretrained_D_dir'])
    load_pretrained(vgg_alter, config['pretrained_vgg_alter_dir'])

    # If using EMA, prepare it
    if config['ema']:
        print('Preparing EMA for G with decay of {}'.format(
            config['ema_decay']))
        E_ema = Encoder(**{
            **config, 'skip_init': True,
            'no_optim': True
        }).to(device)
        ema = utils.ema(E, E_ema, config['ema_decay'], config['ema_start'])
    else:
        E_ema, ema = None, None

    class TrainWarpper(nn.Module):
        def __init__(self):
            super(TrainWarpper, self).__init__()
            self.G = G
            self.D = D
            self.E = E
            self.vgg_alter = vgg_alter

        def forward(self, img, label):
            en_w = self.E(img)
            with torch.no_grad():
                fake = self.G(en_w, self.G.shared(label))
                logits = self.D(fake, label)
                vgg_logits = F.l1_loss(self.vgg_alter(img),
                                       self.vgg_alter(fake))
            return fake, logits, vgg_logits

    Wrapper = TrainWarpper()
    print(G)
    print(D)
    print(E)
    print(vgg_alter)
    print('Number of params in G: {} D: {} E: {} Vgg_alter: {}'.format(*[
        sum([p.data.nelement() for p in net.parameters()])
        for net in [G, D, E, vgg_alter]
    ]))
    # Prepare state dict, which holds things like epoch # and itr #
    state_dict = {
        'itr': 0,
        'epoch': 0,
        'save_num': 0,
        'save_best_num': 0,
        'best_IS': 0,
        'best_FID': 999999,
        'config': config
    }

    # If loading from a pre-trained model, load weights
    if config['resume']:
        print('Loading weights...')
        vae_utils.load_weights(
            [E], state_dict, config['weights_root'], experiment_name,
            config['load_weights'] if config['load_weights'] else None,
            [E_ema if config['ema'] else None])

    # If parallel, parallelize the GD module
    if config['parallel']:
        Wrapper = nn.DataParallel(Wrapper)
        if config['cross_replica']:
            patch_replication_callback(Wrapper)

    # Prepare loggers for stats; metrics holds test metrics,
    # lmetrics holds any desired training metrics.
    test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'],
                                              experiment_name)
    train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name)
    print('Inception Metrics will be saved to {}'.format(test_metrics_fname))
    test_log = utils.MetricsLogger(test_metrics_fname,
                                   reinitialize=(not config['resume']))
    print('Training Metrics will be saved to {}'.format(train_metrics_fname))
    train_log = utils.MyLogger(train_metrics_fname,
                               reinitialize=(not config['resume']),
                               logstyle=config['logstyle'])
    # Write metadata
    utils.write_metadata(config['logs_root'], experiment_name, config,
                         state_dict)
    # Prepare data; the Discriminator's batch size is all that needs to be passed
    # to the dataloader, as G doesn't require dataloading.
    # Note that at every loader iteration we pass in enough data to complete
    # a full D iteration (regardless of number of D steps and accumulations)
    D_batch_size = (config['batch_size'] * config['num_D_steps'] *
                    config['num_D_accumulations'])

    loaders = utils.get_data_loaders(**{
        **config, 'batch_size': D_batch_size,
        'start_itr': state_dict['itr']
    })
    G_batch_size = max(config['G_batch_size'], config['batch_size'])
    fixed_x, fixed_y = vae_utils.prepare_fixed_x(loaders[0], G_batch_size,
                                                 config, experiment_name,
                                                 device)

    # Prepare noise and randomly sampled label arrays

    def train(img, label):
        E.optim.zero_grad()
        img = torch.split(img, config['batch_size'])
        label = torch.split(label, config['batch_size'])
        counter = 0

        for step_index in range(config['num_D_steps']):
            E.optim.zero_grad()
            fake, logits, vgg_loss = Wrapper(img[counter], label[counter])
            vgg_loss = vgg_loss * config['vgg_loss_scale']
            d_loss = losses.generator_loss(logits) * config['adv_loss_scale']
            recon_loss = losses.recon_loss(
                fakes=fake, reals=img[counter]) * config['recon_loss_scale']
            loss = d_loss + recon_loss + vgg_loss
            loss.backward()
            counter += 1
            if config['E_ortho'] > 0.0:
                # Debug print to indicate we're using ortho reg in D.
                print('using modified ortho reg in D')
                utils.ortho(D, config['E_ortho'])
            E.optim.step()

        out = {
            'Vgg_loss': float(vgg_loss.item()),
            'D_loss': float(d_loss.item()),
            'pixel_loss': float(recon_loss.item())
        }
        return out

    print('Beginning training at epoch %d...' % state_dict['epoch'])
    # Train for specified number of epochs, although we mostly track G iterations.
    for epoch in range(state_dict['epoch'], config['num_epochs']):
        # Which progressbar to use? TQDM or my own?
        if config['pbar'] == 'mine':
            pbar = utils.progress(loaders[0],
                                  displaytype='s1k' if
                                  config['use_multiepoch_sampler'] else 'eta')
        else:
            pbar = tqdm(loaders[0])
        for i, (x, y) in enumerate(pbar):
            # Increment the iteration counter
            state_dict['itr'] += 1
            # Make sure G and D are in training mode, just in case they got set to eval
            # For D, which typically doesn't have BN, this shouldn't matter much.
            G.train()
            D.train()
            E.train()
            vgg_alter.train()
            if config['ema']:
                E_ema.train()
            if config['D_fp16']:
                x, y = x.to(device).half(), y.to(device)
            else:
                x, y = x.to(device), y.to(device)
            metrics = train(x, y)
            train_log.log(itr=int(state_dict['itr']), **metrics)

            # Every sv_log_interval, log singular values
            if (config['sv_log_interval'] > 0) and (
                    not (state_dict['itr'] % config['sv_log_interval'])):
                train_log.log(itr=int(state_dict['itr']),
                              **{**utils.get_SVs(E, 'E')})

            # If using my progbar, print metrics.
            if config['pbar'] == 'mine':
                print(', '.join(
                    ['itr: %d' % state_dict['itr']] +
                    ['%s : %+4.3f' % (key, metrics[key]) for key in metrics]),
                      end=' ')

            # Save weights and copies as configured at specified interval
            if not (state_dict['itr'] % config['save_every']):
                if config['G_eval_mode']:
                    print('Switchin G to eval mode...')
                    G.eval()
                    E.eval()
                    if config['ema']:
                        E_ema.eval()
                save_and_sample(G, E, E_ema, fixed_x, fixed_y, state_dict,
                                config, experiment_name)
        # Increment epoch counter at end of epoch
        state_dict['epoch'] += 1
示例#4
0
def run(config):

  # Update the config dict as necessary
  # This is for convenience, to add settings derived from the user-specified
  # configuration into the config-dict (e.g. inferring the number of classes
  # and size of the images from the dataset, passing in a pytorch object
  # for the activation specified as a string)
  config['resolution'] = utils.imsize_dict[config['dataset']]
  config['n_classes'] = utils.nclass_dict[config['dataset']]
  config['G_activation'] = utils.activation_dict[config['G_nl']]
  config['D_activation'] = utils.activation_dict[config['D_nl']]
  # By default, skip init if resuming training.
  if config['resume']:
    print('Skipping initialization for training resumption...')
    config['skip_init'] = True
  config = vae_utils.update_config_roots(config)
  device = 'cuda'

  # Seed RNG
  utils.seed_rng(config['seed'])

  # Prepare root folders if necessary
  utils.prepare_root(config)

  # Setup cudnn.benchmark for free speed
  torch.backends.cudnn.benchmark = True

  # Import the model--this line allows us to dynamically select different files.
  experiment_name = (config['experiment_name'] if config['experiment_name']
                     else utils.name_from_config(config))
  print('Experiment name is %s' % experiment_name)

  # Next, build the model
  E = Encoder(**{**config, 'arch': 'default'}).to(device)
  Out = Encoder(**{**config, 'arch': 'out'}).to(device)

  # If using EMA, prepare it
  if config['ema']:
    print('Preparing EMA for G with decay of {}'.format(config['ema_decay']))
    E_ema = Encoder(**{**config, 'skip_init':True,
                       'no_optim': True, 'arch': 'default'}).to(device)
    O_ema = Encoder(**{**config, 'skip_init':True,
                       'no_optim': True, 'arch': 'out'}).to(device)
    eema = utils.ema(E, E_ema, config['ema_decay'], config['ema_start'])
    oema = utils.ema(Out, O_ema, config['ema_decay'], config['ema_start'])
  else:
    E_ema, eema, O_ema, oema = None, None, None, None

  print(E)
  print(Out)
  print('Number of params in E: {}'.format(
    *[sum([p.data.nelement() for p in net.parameters()]) for net in [E, Out]]))
  # Prepare state dict, which holds things like epoch # and itr #
  state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0,
                'best_IS': 0, 'best_FID': 999999, 'config': config, 'best_precise': 0.0}

  # If loading from a pre-trained model, load weights
  if config['resume']:
    print('Loading weights...')
    vae_utils.load_weights([E, Out], state_dict,
                           config['weights_root'], experiment_name,
                           config['load_weights'] if config['load_weights'] else None,
                           [E_ema, O_ema] if config['ema'] else [None])

  class Wrapper(nn.Module):
    def __init__(self):
      super(Wrapper, self).__init__()
      self.E = E
      self.O = Out

    def forward(self, x):
      x = self.E(x)
      x = self.O(x)
      return x

  W = Wrapper()

  # If parallel, parallelize the GD module
  if config['parallel']:
    W = nn.DataParallel(W)
    if config['cross_replica']:
      patch_replication_callback(W)


  # Prepare loggers for stats; metrics holds test metrics,
  # lmetrics holds any desired training metrics.
  test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'],
                                            experiment_name)
  train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name)
  print('Inception Metrics will be saved to {}'.format(test_metrics_fname))
  test_log = utils.MetricsLogger(test_metrics_fname,
                                 reinitialize=(not config['resume']))
  print('Training Metrics will be saved to {}'.format(train_metrics_fname))
  train_log = utils.MyLogger(train_metrics_fname,
                             reinitialize=(not config['resume']),
                             logstyle=config['logstyle'])
  # Write metadata
  utils.write_metadata(config['logs_root'], experiment_name, config, state_dict)
  # Batch size for dataloader, prefetch 8 times batch
  batch_size = config['batch_size'] * config['num_D_steps'] * config['num_D_accumulations']

  # eval_loader = utils.get_data_loaders(**{**config, 'load_in_mem': False, 'use_multiepoch_sampler': False})[0]
  # dense_eval = vae_utils.dense_eval(2048, config['n_classes'], steps=5).to(device)
  # eval_fn = functools.partial(vae_utils.eval_encoder, sample_batch=10,
  #                             config=config, loader=eval_loader,
  #                             dense_eval=dense_eval, device=device)
  eval_fn = None

  E_scheduler = torch.optim.lr_scheduler.StepLR(E.optim, step_size=50, gamma=0.1)
  O_scheduler = torch.optim.lr_scheduler.StepLR(Out.optim, step_size=50, gamma=0.1)

  def train(w, img):
    E.optim.zero_grad()
    Out.optim.zero_grad()
    w_ = W(img)
    loss = F.mse_loss(w_, w, reduction='mean')
    loss.backward()
    if config['E_ortho'] > 0.0:
      # Debug print to indicate we're using ortho reg in D.
      print('using modified ortho reg in E')
      utils.ortho(E, config['E_ortho'])
      utils.ortho(Out, config['E_ortho'])
    E.optim.step()
    Out.optim.step()
    out = {' loss': float(loss.item())}
    if config['ema']:
      for ema in [eema, oema]:
        ema.update(state_dict['itr'])
    del w_, loss
    return out

  loader = sampled_ssgan.get_SSGAN_sample_loader(**{**config, 'batch_size': batch_size,
                                                    'start_itr': state_dict['itr'], 'is_slice': False})

  print('Beginning training at epoch %d...' % state_dict['epoch'])
  # Train for specified number of epochs, although we mostly track G iterations.
  for epoch in range(state_dict['epoch'], config['num_epochs']):
    # Which progressbar to use? TQDM or my own?
    if config['pbar'] == 'mine':
      pbar = utils.progress(loader, displaytype='eta')
    else:
      pbar = tqdm(loader)
    for i, (img, z, w) in enumerate(pbar):
      # Increment the iteration counter
      state_dict['itr'] += 1
      # Make sure G and D are in training mode, just in case they got set to eval
      # For D, which typically doesn't have BN, this shouldn't matter much.
      E.train()
      Out.train()
      if config['ema']:
        E_ema.train()
        O_ema.train()

      img, w = img.to(device), w.to(device)
      counter = 0
      img = torch.split(img, config['batch_size'])
      w = torch.split(w, config['batch_size'])
      metrics = train(w[counter], img[counter])
      counter += 1
      del img, w

      train_log.log(itr=int(state_dict['itr']), **metrics)

      # Every sv_log_interval, log singular values
      if (config['sv_log_interval'] > 0) and (not (state_dict['itr'] % config['sv_log_interval'])):
        train_log.log(itr=int(state_dict['itr']),
                      **{**utils.get_SVs(E, 'E'), **utils.get_SVs(Out, 'Out')})

      # If using my progbar, print metrics.
      if config['pbar'] == 'mine':
        print(', '.join(['itr: %d' % state_dict['itr']]
                        + ['%s : %+4.3f' % (key, metrics[key])
                           for key in metrics]), end=' ')

      # Save weights and copies as configured at specified interval
      if not (state_dict['itr'] % config['save_every']):
        if config['G_eval_mode']:
          print('Switchin E to eval mode...')
          E.eval()
          if config['ema']:
            E_ema.eval()
        sampled_ssgan.save_and_eavl(E, Out, E_ema, O_ema, state_dict, config, experiment_name, eval_fn, test_log)
    #  Increment epoch counter at end of epoch
    state_dict['epoch'] += 1
    E_scheduler.step()
    O_scheduler.step()