def run(config): # Update the config dict as necessary # This is for convenience, to add settings derived from the user-specified # configuration into the config-dict (e.g. inferring the number of classes # and size of the images from the dataset, passing in a pytorch object # for the activation specified as a string) config['resolution'] = utils.imsize_dict[config['dataset']] config['n_classes'] = utils.nclass_dict[config['dataset']] config['G_activation'] = utils.activation_dict[config['G_nl']] config['D_activation'] = utils.activation_dict[config['D_nl']] # By default, skip init if resuming training. if config['resume']: print('Skipping initialization for training resumption...') config['skip_init'] = True config = vae_utils.update_config_roots(config) device = 'cuda' # Seed RNG utils.seed_rng(config['seed']) # Prepare root folders if necessary utils.prepare_root(config) # Setup cudnn.benchmark for free speed torch.backends.cudnn.benchmark = True # Import the model--this line allows us to dynamically select different files. experiment_name = (config['experiment_name'] if config['experiment_name'] else utils.name_from_config(config)) print('Experiment name is %s' % experiment_name) # Next, build the model E = Ex.Extractor(**config).to(device) # If using EMA, prepare it if config['ema']: print('Preparing EMA for E with decay of {}'.format(config['ema_decay'])) E_ema = Ex.Extractor(**{**config, 'skip_init':True, 'no_optim': True}).to(device) ema = utils.ema(E, E_ema, config['ema_decay'], config['ema_start']) else: E_ema, ema = None, None print(E) print('Number of params in E: {}'.format( sum([p.data.nelement() for p in E.parameters()]))) # Prepare state dict, which holds things like epoch # and itr # state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0, 'best_IS': 0, 'best_FID': 999999, 'config': config} # If loading from a pre-trained model, load weights if config['resume']: print('Loading weights...') vae_utils.load_weights([E], state_dict, config['weights_root'], experiment_name, config['load_weights'] if config['load_weights'] else None, [E_ema] if config['ema'] else None) # If parallel, parallelize the GD module if config['parallel']: E_parallel = nn.DataParallel(E) if config['cross_replica']: patch_replication_callback(E_parallel) # Prepare loggers for stats; metrics holds test metrics, # lmetrics holds any desired training metrics. test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'], experiment_name) train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name) print('Inception Metrics will be saved to {}'.format(test_metrics_fname)) test_log = utils.MetricsLogger(test_metrics_fname, reinitialize=(not config['resume'])) print('Training Metrics will be saved to {}'.format(train_metrics_fname)) train_log = utils.MyLogger(train_metrics_fname, reinitialize=(not config['resume']), logstyle=config['logstyle']) # Write metadata utils.write_metadata(config['logs_root'], experiment_name, config, state_dict) # Prepare data; the Discriminator's batch size is all that needs to be passed # to the dataloader, as G doesn't require dataloading. # Note that at every loader iteration we pass in enough data to complete # a full D iteration (regardless of number of D steps and accumulations) D_batch_size = (config['batch_size'] * 8) loaders = mini_datasets.get_data_loaders(**{**config, 'batch_size': D_batch_size, 'start_itr': state_dict['itr']}) # Prepare noise and randomly sampled label arrays # Allow for different batch sizes in G G_batch_size = max(config['G_batch_size'], config['batch_size']) # Loaders are loaded, prepare the training function if config['which_train_fn'] == 'GAN': train = Ex.Extractor_training_function(E, ema, E_parallel, state_dict, config) # Else, assume debugging and use the dummy train fn else: train = train_fns.dummy_training_function() print('Beginning training at epoch %d...' % state_dict['epoch']) # Train for specified number of epochs, although we mostly track G iterations. for epoch in range(state_dict['epoch'], config['num_epochs']): # Which progressbar to use? TQDM or my own? if config['pbar'] == 'mine': pbar = utils.progress(zip(loaders[0], loaders[1]), displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta') else: pbar = tqdm(zip(loaders[0], loaders[1])) for i, (lx, ly, ux, uy) in enumerate(pbar): x = torch.cat([lx, ux], 0) y = torch.cat([ly, uy]) # Increment the iteration counter state_dict['itr'] += 1 # Make sure G and D are in training mode, just in case they got set to eval # For D, which typically doesn't have BN, this shouldn't matter much. E.train() ## Last night we process here! if config['ema']: E_ema.train() if config['D_fp16']: x, y = x.to(device).half(), y.to(device) else: x, y = x.to(device), y.to(device) metrics = train(x, y) train_log.log(itr=int(state_dict['itr']), **metrics) # Every sv_log_interval, log singular values if (config['sv_log_interval'] > 0) and (not (state_dict['itr'] % config['sv_log_interval'])): train_log.log(itr=int(state_dict['itr']), **{**utils.get_SVs(G, 'G'), **utils.get_SVs(D, 'D')}) # If using my progbar, print metrics. if config['pbar'] == 'mine': print(', '.join(['itr: %d' % state_dict['itr']] + ['%s : %+4.3f' % (key, metrics[key]) for key in metrics]), end=' ') # Save weights and copies as configured at specified interval if not (state_dict['itr'] % config['save_every']): if config['G_eval_mode']: print('Switchin G to eval mode...') G.eval() if config['ema']: G_ema.eval() train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict, config, experiment_name) # Test every specified interval if not (state_dict['itr'] % config['test_every']): if config['G_eval_mode']: print('Switchin G to eval mode...') G.eval() train_fns.test(G, D, G_ema, z_, y_, state_dict, config, sample, get_inception_metrics, experiment_name, test_log) # Increment epoch counter at end of epoch state_dict['epoch'] += 1
def run(config): # Update the config dict as necessary # This is for convenience, to add settings derived from the user-specified # configuration into the config-dict (e.g. inferring the number of classes # and size of the images from the dataset, passing in a pytorch object # for the activation specified as a string) config['resolution'] = utils.imsize_dict[config['dataset']] config['n_classes'] = utils.nclass_dict[config['dataset']] config['G_activation'] = utils.activation_dict[config['G_nl']] config['D_activation'] = utils.activation_dict[config['D_nl']] # By default, skip init if resuming training. if config['resume']: print('Skipping initialization for training resumption...') config['skip_init'] = True config = vae_utils.update_config_roots(config) device = 'cuda' # Seed RNG utils.seed_rng(config['seed']) # Prepare root folders if necessary utils.prepare_root(config) # Setup cudnn.benchmark for free speed torch.backends.cudnn.benchmark = True # Import the model--this line allows us to dynamically select different files. model = import_module('Network.' + config['model']) experiment_name = (config['experiment_name'] if config['experiment_name'] else utils.name_from_config(config)) print('Experiment name is %s' % experiment_name) # Next, build the model G = model.Generator(**config).to(device) D = model.Discriminator(**config).to(device) L = model.LatentBinder(**config).to(device) I = Invert.Invert(**config).to(device) E = Encoder.Encoder(**config).to(device) Decoder = model.Decoder(I, E, G, D, L).to(device) # If using EMA, prepare it if config['ema']: print('Preparing EMA for G with decay of {}'.format( config['ema_decay'])) G_ema = model.Generator(name='G_ema', **{ **config, 'skip_init': True, 'no_optim': True }).to(device) gema = utils.ema(G, G_ema, config['ema_decay'], config['ema_start']) print('Preparing EMA for Invert with decay of {}'.format( config['ema_decay'])) I_ema = Invert.Invert(name='Invert_ema', **{ **config, 'skip_init': True, 'no_optim': True }).to(device) iema = utils.ema(I, I_ema, config['ema_decay'], config['ema_start']) print('Preparing EMA for Encoder with decay of {}'.format( config['ema_decay'])) E_ema = Encoder.Encoder(name='Encoder_ema', **{ **config, 'skip_init': True, 'no_optim': True }).to(device) eema = utils.ema(E, E_ema, config['ema_decay'], config['ema_start']) else: G_ema, gema, I_ema, iema, E_ema, eema = None, None, None, None, None, None # FP16? We should also half other components of Deocer, but as we will not use FP16, we simply # not implement this. if config['G_fp16']: print('Casting G to float16...') G = G.half() if config['ema']: G_ema = G_ema.half() if config['D_fp16']: print('Casting D to fp16...') D = D.half() # Consider automatically reducing SN_eps? print(G) print(D) print(I) print(E) print(L) print( 'Number of params in G: {} D: {} Invert: {} Encoder: {} LatentBinder: {}' .format(*[ sum([p.data.nelement() for p in net.parameters()]) for net in [G, D, I, E, L] ])) # Prepare state dict, which holds things like epoch # and itr # state_dict = { 'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0, 'best_IS': 0, 'best_FID': 999999, 'config': config } # If loading from a pre-trained model, load weights if config['resume']: print('Loading weights...') vae_utils.load_weights( [G, D, I, E, L], state_dict, config['weights_root'], experiment_name, config['load_weights'] if config['load_weights'] else None, [G_ema, I_ema, E_ema] if config['ema'] else None) # If parallel, parallelize the GD module if config['parallel']: Decoder = nn.DataParallel(Decoder) if config['cross_replica']: patch_replication_callback(Decoder) # Prepare loggers for stats; metrics holds test metrics, # lmetrics holds any desired training metrics. test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'], experiment_name) train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name) print('Inception Metrics will be saved to {}'.format(test_metrics_fname)) test_log = utils.MetricsLogger(test_metrics_fname, reinitialize=(not config['resume'])) print('Training Metrics will be saved to {}'.format(train_metrics_fname)) train_log = utils.MyLogger(train_metrics_fname, reinitialize=(not config['resume']), logstyle=config['logstyle']) # Write metadata utils.write_metadata(config['logs_root'], experiment_name, config, state_dict) # Prepare data; the Discriminator's batch size is all that needs to be passed # to the dataloader, as G doesn't require dataloading. # Note that at every loader iteration we pass in enough data to complete # a full D iteration (regardless of number of D steps and accumulations) D_batch_size = (config['batch_size'] * config['num_D_steps'] * config['num_D_accumulations']) loaders = vae_utils.get_minidata_loaders(**{ **config, 'batch_size': D_batch_size, 'start_itr': state_dict['itr'] }) # Prepare inception metrics: FID and IS get_inception_metrics = inception_utils.prepare_inception_metrics( config['dataset'], config['parallel'], config['data_root'], config['no_fid']) # Prepare vgg for recon_loss, considering loss is parallel, it's no need for vgg to be parallel # vgg is pretrained on imagenet, so we cannot use it. # vgg = load_vgg_from_local(parallel=False) # Prepare KNN for evaluating encoder. # KNN = vae_utils.KNN(loaders[0], anchor_num=10, K=4) KNN = None # Prepare noise and randomly sampled label arrays # Allow for different batch sizes in G G_batch_size = max(config['G_batch_size'], config['batch_size']) z_, y_ = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) # Prepare fake labels for encoder. _, ey_ = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) # Prepare a fixed z & y to see individual sample evolution throghout training fixed_z, fixed_y = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) fixed_x = vae_utils.prepare_fixed_x(loaders[0], G_batch_size, config, experiment_name, device) fixed_z.sample_() fixed_y.sample_() # Loaders are loaded, prepare the training function if config['which_train_fn'] == 'GAN': train = train_vae_fns.VAE_training_function(G, D, E, I, L, Decoder, z_, y_, ey_, [gema, iema, eema], state_dict, config) # Else, assume debugging and use the dummy train fn else: train = train_vae_fns.dummy_training_function() # Prepare Sample function for use with inception metrics sample = functools.partial( vae_utils.sample, Invert=(I_ema if config['ema'] and config['use_ema'] else I), G=(G_ema if config['ema'] and config['use_ema'] else G), z_=z_, y_=y_, config=config) print('Beginning training at epoch %d...' % state_dict['epoch']) # Train for specified number of epochs, although we mostly track G iterations. for epoch in range(state_dict['epoch'], config['num_epochs']): # Which progressbar to use? TQDM or my own? if config['pbar'] == 'mine': pbar = utils.progress(loaders[0], displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta') else: pbar = tqdm(loaders[0]) for i, (x, y) in enumerate(pbar): # Increment the iteration counter state_dict['itr'] += 1 # Make sure G and D are in training mode, just in case they got set to eval # For D, which typically doesn't have BN, this shouldn't matter much. G.train() D.train() I.train() E.train() L.train() if config['ema']: G_ema.train() I_ema.train() E_ema.train() if config['D_fp16']: x, y = x.to(device).half(), y.to(device) else: x, y = x.to(device), y.to(device) metrics = train(x) train_log.log(itr=int(state_dict['itr']), **metrics) # Every sv_log_interval, log singular values if (config['sv_log_interval'] > 0) and ( not (state_dict['itr'] % config['sv_log_interval'])): train_log.log(itr=int(state_dict['itr']), **{ **utils.get_SVs(G, 'G'), **utils.get_SVs(D, 'D'), **utils.get_SVs(I, 'Invert'), **utils.get_SVs(E, 'Encoder'), **utils.get_SVs(L, 'LatentBinder') }) # If using my progbar, print metrics. if config['pbar'] == 'mine': print(', '.join( ['itr: %d' % state_dict['itr']] + ['%s : %+4.3f' % (key, metrics[key]) for key in metrics]), end=' ') # Save weights and copies as configured at specified interval if not (state_dict['itr'] % config['save_every']): if config['G_eval_mode']: print('Switchin G to eval mode...') G.eval() I.eval() E.eval() if config['ema']: G_ema.eval() I_ema.eval() E_ema.eval() train_vae_fns.save_and_sample(G, D, E, I, L, G_ema, I_ema, E_ema, z_, y_, fixed_z, fixed_y, fixed_x, state_dict, config, experiment_name) # Test every specified interval if not (state_dict['itr'] % config['test_every']): if config['G_eval_mode']: print('Switchin G to eval mode...') G.eval() I.eval() E.eval() train_vae_fns.test(G, D, E, I, L, KNN, G_ema, I_ema, E_ema, z_, y_, state_dict, config, sample, get_inception_metrics, experiment_name, test_log) # Increment epoch counter at end of epoch state_dict['epoch'] += 1
def run(config): # Update the config dict as necessary # This is for convenience, to add settings derived from the user-specified # configuration into the config-dict (e.g. inferring the number of classes # and size of the images from the dataset, passing in a pytorch object # for the activation specified as a string) config['resolution'] = utils.imsize_dict[config['dataset']] config['n_classes'] = utils.nclass_dict[config['dataset']] config['G_activation'] = utils.activation_dict[config['G_nl']] config['D_activation'] = utils.activation_dict[config['D_nl']] # By default, skip init if resuming training. if config['resume']: print('Skipping initialization for training resumption...') config['skip_init'] = True config = vae_utils.update_config_roots(config) device = 'cuda' # Seed RNG utils.seed_rng(config['seed']) # Prepare root folders if necessary utils.prepare_root(config) # Setup cudnn.benchmark for free speed torch.backends.cudnn.benchmark = True experiment_name = (config['experiment_name'] if config['experiment_name'] else utils.name_from_config(config)) print('Experiment name is %s' % experiment_name) # Next, build the model G = BigGAN.Generator(**{ **config, 'skip_init': True, 'no_optim': True }).to(device) D = BigGAN.Discriminator(**{ **config, 'skip_init': True, 'no_optim': True }).to(device) E = Encoder(**config).to(device) vgg_alter = Encoder(**{ **config, 'skip_init': True, 'no_optim': True, 'name': 'Vgg_alter' }).to(device) load_pretrained(G, config['pretrained_G_dir']) load_pretrained(D, config['pretrained_D_dir']) load_pretrained(vgg_alter, config['pretrained_vgg_alter_dir']) # If using EMA, prepare it if config['ema']: print('Preparing EMA for G with decay of {}'.format( config['ema_decay'])) E_ema = Encoder(**{ **config, 'skip_init': True, 'no_optim': True }).to(device) ema = utils.ema(E, E_ema, config['ema_decay'], config['ema_start']) else: E_ema, ema = None, None class TrainWarpper(nn.Module): def __init__(self): super(TrainWarpper, self).__init__() self.G = G self.D = D self.E = E self.vgg_alter = vgg_alter def forward(self, img, label): en_w = self.E(img) with torch.no_grad(): fake = self.G(en_w, self.G.shared(label)) logits = self.D(fake, label) vgg_logits = F.l1_loss(self.vgg_alter(img), self.vgg_alter(fake)) return fake, logits, vgg_logits Wrapper = TrainWarpper() print(G) print(D) print(E) print(vgg_alter) print('Number of params in G: {} D: {} E: {} Vgg_alter: {}'.format(*[ sum([p.data.nelement() for p in net.parameters()]) for net in [G, D, E, vgg_alter] ])) # Prepare state dict, which holds things like epoch # and itr # state_dict = { 'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0, 'best_IS': 0, 'best_FID': 999999, 'config': config } # If loading from a pre-trained model, load weights if config['resume']: print('Loading weights...') vae_utils.load_weights( [E], state_dict, config['weights_root'], experiment_name, config['load_weights'] if config['load_weights'] else None, [E_ema if config['ema'] else None]) # If parallel, parallelize the GD module if config['parallel']: Wrapper = nn.DataParallel(Wrapper) if config['cross_replica']: patch_replication_callback(Wrapper) # Prepare loggers for stats; metrics holds test metrics, # lmetrics holds any desired training metrics. test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'], experiment_name) train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name) print('Inception Metrics will be saved to {}'.format(test_metrics_fname)) test_log = utils.MetricsLogger(test_metrics_fname, reinitialize=(not config['resume'])) print('Training Metrics will be saved to {}'.format(train_metrics_fname)) train_log = utils.MyLogger(train_metrics_fname, reinitialize=(not config['resume']), logstyle=config['logstyle']) # Write metadata utils.write_metadata(config['logs_root'], experiment_name, config, state_dict) # Prepare data; the Discriminator's batch size is all that needs to be passed # to the dataloader, as G doesn't require dataloading. # Note that at every loader iteration we pass in enough data to complete # a full D iteration (regardless of number of D steps and accumulations) D_batch_size = (config['batch_size'] * config['num_D_steps'] * config['num_D_accumulations']) loaders = utils.get_data_loaders(**{ **config, 'batch_size': D_batch_size, 'start_itr': state_dict['itr'] }) G_batch_size = max(config['G_batch_size'], config['batch_size']) fixed_x, fixed_y = vae_utils.prepare_fixed_x(loaders[0], G_batch_size, config, experiment_name, device) # Prepare noise and randomly sampled label arrays def train(img, label): E.optim.zero_grad() img = torch.split(img, config['batch_size']) label = torch.split(label, config['batch_size']) counter = 0 for step_index in range(config['num_D_steps']): E.optim.zero_grad() fake, logits, vgg_loss = Wrapper(img[counter], label[counter]) vgg_loss = vgg_loss * config['vgg_loss_scale'] d_loss = losses.generator_loss(logits) * config['adv_loss_scale'] recon_loss = losses.recon_loss( fakes=fake, reals=img[counter]) * config['recon_loss_scale'] loss = d_loss + recon_loss + vgg_loss loss.backward() counter += 1 if config['E_ortho'] > 0.0: # Debug print to indicate we're using ortho reg in D. print('using modified ortho reg in D') utils.ortho(D, config['E_ortho']) E.optim.step() out = { 'Vgg_loss': float(vgg_loss.item()), 'D_loss': float(d_loss.item()), 'pixel_loss': float(recon_loss.item()) } return out print('Beginning training at epoch %d...' % state_dict['epoch']) # Train for specified number of epochs, although we mostly track G iterations. for epoch in range(state_dict['epoch'], config['num_epochs']): # Which progressbar to use? TQDM or my own? if config['pbar'] == 'mine': pbar = utils.progress(loaders[0], displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta') else: pbar = tqdm(loaders[0]) for i, (x, y) in enumerate(pbar): # Increment the iteration counter state_dict['itr'] += 1 # Make sure G and D are in training mode, just in case they got set to eval # For D, which typically doesn't have BN, this shouldn't matter much. G.train() D.train() E.train() vgg_alter.train() if config['ema']: E_ema.train() if config['D_fp16']: x, y = x.to(device).half(), y.to(device) else: x, y = x.to(device), y.to(device) metrics = train(x, y) train_log.log(itr=int(state_dict['itr']), **metrics) # Every sv_log_interval, log singular values if (config['sv_log_interval'] > 0) and ( not (state_dict['itr'] % config['sv_log_interval'])): train_log.log(itr=int(state_dict['itr']), **{**utils.get_SVs(E, 'E')}) # If using my progbar, print metrics. if config['pbar'] == 'mine': print(', '.join( ['itr: %d' % state_dict['itr']] + ['%s : %+4.3f' % (key, metrics[key]) for key in metrics]), end=' ') # Save weights and copies as configured at specified interval if not (state_dict['itr'] % config['save_every']): if config['G_eval_mode']: print('Switchin G to eval mode...') G.eval() E.eval() if config['ema']: E_ema.eval() save_and_sample(G, E, E_ema, fixed_x, fixed_y, state_dict, config, experiment_name) # Increment epoch counter at end of epoch state_dict['epoch'] += 1
def run(config): # Update the config dict as necessary # This is for convenience, to add settings derived from the user-specified # configuration into the config-dict (e.g. inferring the number of classes # and size of the images from the dataset, passing in a pytorch object # for the activation specified as a string) config['resolution'] = utils.imsize_dict[config['dataset']] config['n_classes'] = utils.nclass_dict[config['dataset']] config['G_activation'] = utils.activation_dict[config['G_nl']] config['D_activation'] = utils.activation_dict[config['D_nl']] # By default, skip init if resuming training. if config['resume']: print('Skipping initialization for training resumption...') config['skip_init'] = True config = vae_utils.update_config_roots(config) device = 'cuda' # Seed RNG utils.seed_rng(config['seed']) # Prepare root folders if necessary utils.prepare_root(config) # Setup cudnn.benchmark for free speed torch.backends.cudnn.benchmark = True # Import the model--this line allows us to dynamically select different files. experiment_name = (config['experiment_name'] if config['experiment_name'] else utils.name_from_config(config)) print('Experiment name is %s' % experiment_name) # Next, build the model E = Encoder(**{**config, 'arch': 'default'}).to(device) Out = Encoder(**{**config, 'arch': 'out'}).to(device) # If using EMA, prepare it if config['ema']: print('Preparing EMA for G with decay of {}'.format(config['ema_decay'])) E_ema = Encoder(**{**config, 'skip_init':True, 'no_optim': True, 'arch': 'default'}).to(device) O_ema = Encoder(**{**config, 'skip_init':True, 'no_optim': True, 'arch': 'out'}).to(device) eema = utils.ema(E, E_ema, config['ema_decay'], config['ema_start']) oema = utils.ema(Out, O_ema, config['ema_decay'], config['ema_start']) else: E_ema, eema, O_ema, oema = None, None, None, None print(E) print(Out) print('Number of params in E: {}'.format( *[sum([p.data.nelement() for p in net.parameters()]) for net in [E, Out]])) # Prepare state dict, which holds things like epoch # and itr # state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0, 'best_IS': 0, 'best_FID': 999999, 'config': config, 'best_precise': 0.0} # If loading from a pre-trained model, load weights if config['resume']: print('Loading weights...') vae_utils.load_weights([E, Out], state_dict, config['weights_root'], experiment_name, config['load_weights'] if config['load_weights'] else None, [E_ema, O_ema] if config['ema'] else [None]) class Wrapper(nn.Module): def __init__(self): super(Wrapper, self).__init__() self.E = E self.O = Out def forward(self, x): x = self.E(x) x = self.O(x) return x W = Wrapper() # If parallel, parallelize the GD module if config['parallel']: W = nn.DataParallel(W) if config['cross_replica']: patch_replication_callback(W) # Prepare loggers for stats; metrics holds test metrics, # lmetrics holds any desired training metrics. test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'], experiment_name) train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name) print('Inception Metrics will be saved to {}'.format(test_metrics_fname)) test_log = utils.MetricsLogger(test_metrics_fname, reinitialize=(not config['resume'])) print('Training Metrics will be saved to {}'.format(train_metrics_fname)) train_log = utils.MyLogger(train_metrics_fname, reinitialize=(not config['resume']), logstyle=config['logstyle']) # Write metadata utils.write_metadata(config['logs_root'], experiment_name, config, state_dict) # Batch size for dataloader, prefetch 8 times batch batch_size = config['batch_size'] * config['num_D_steps'] * config['num_D_accumulations'] # eval_loader = utils.get_data_loaders(**{**config, 'load_in_mem': False, 'use_multiepoch_sampler': False})[0] # dense_eval = vae_utils.dense_eval(2048, config['n_classes'], steps=5).to(device) # eval_fn = functools.partial(vae_utils.eval_encoder, sample_batch=10, # config=config, loader=eval_loader, # dense_eval=dense_eval, device=device) eval_fn = None E_scheduler = torch.optim.lr_scheduler.StepLR(E.optim, step_size=50, gamma=0.1) O_scheduler = torch.optim.lr_scheduler.StepLR(Out.optim, step_size=50, gamma=0.1) def train(w, img): E.optim.zero_grad() Out.optim.zero_grad() w_ = W(img) loss = F.mse_loss(w_, w, reduction='mean') loss.backward() if config['E_ortho'] > 0.0: # Debug print to indicate we're using ortho reg in D. print('using modified ortho reg in E') utils.ortho(E, config['E_ortho']) utils.ortho(Out, config['E_ortho']) E.optim.step() Out.optim.step() out = {' loss': float(loss.item())} if config['ema']: for ema in [eema, oema]: ema.update(state_dict['itr']) del w_, loss return out loader = sampled_ssgan.get_SSGAN_sample_loader(**{**config, 'batch_size': batch_size, 'start_itr': state_dict['itr'], 'is_slice': False}) print('Beginning training at epoch %d...' % state_dict['epoch']) # Train for specified number of epochs, although we mostly track G iterations. for epoch in range(state_dict['epoch'], config['num_epochs']): # Which progressbar to use? TQDM or my own? if config['pbar'] == 'mine': pbar = utils.progress(loader, displaytype='eta') else: pbar = tqdm(loader) for i, (img, z, w) in enumerate(pbar): # Increment the iteration counter state_dict['itr'] += 1 # Make sure G and D are in training mode, just in case they got set to eval # For D, which typically doesn't have BN, this shouldn't matter much. E.train() Out.train() if config['ema']: E_ema.train() O_ema.train() img, w = img.to(device), w.to(device) counter = 0 img = torch.split(img, config['batch_size']) w = torch.split(w, config['batch_size']) metrics = train(w[counter], img[counter]) counter += 1 del img, w train_log.log(itr=int(state_dict['itr']), **metrics) # Every sv_log_interval, log singular values if (config['sv_log_interval'] > 0) and (not (state_dict['itr'] % config['sv_log_interval'])): train_log.log(itr=int(state_dict['itr']), **{**utils.get_SVs(E, 'E'), **utils.get_SVs(Out, 'Out')}) # If using my progbar, print metrics. if config['pbar'] == 'mine': print(', '.join(['itr: %d' % state_dict['itr']] + ['%s : %+4.3f' % (key, metrics[key]) for key in metrics]), end=' ') # Save weights and copies as configured at specified interval if not (state_dict['itr'] % config['save_every']): if config['G_eval_mode']: print('Switchin E to eval mode...') E.eval() if config['ema']: E_ema.eval() sampled_ssgan.save_and_eavl(E, Out, E_ema, O_ema, state_dict, config, experiment_name, eval_fn, test_log) # Increment epoch counter at end of epoch state_dict['epoch'] += 1 E_scheduler.step() O_scheduler.step()