def test(self, x_test, y_test, params, n_centers, width): y_true = [] y_pred = [] (p, _) = x_test.shape for i in range(p): d = y_test[i] y = self.predict(x_test[i], params, n_centers, width) # Confusion Matrix y_true.append(list(d)) y_pred.append(list(y)) a = util.inverse_transform(y_true, self.n_classes) b = util.inverse_transform(y_pred, self.n_classes) return acc(a, b), tpr(a, b, average='macro'), 0, ppv(a, b, average='weighted')
def test(self, x_test, y_test): (m, _) = x_test.shape y_actu = [] y_pred = [] for i in range(m): xi = x_test[i] y, _ = self.predict(xi) d = y_test[i] # Confusion Matrix y_actu.append(list(d)) y_pred.append(list(y)) a = util.inverse_transform(y_actu) b = util.inverse_transform(y_pred) cm = ConfusionMatrix(a, b) #cm.print_stats() #util.plotConfusionMatrix(cm) return cm.ACC, cm.TPR, cm.SPC, cm.PPV