示例#1
0
def run_learnt_greedy(saveJson=True):
    Globals().cars_out_memory = []
    model_file_names = [
        'static_files/model-agent0.h5', 'static_files/model-agent1.h5',
        'static_files/model-agent2.h5', 'static_files/model-agent3.h5'
    ]
    agents = get_LearnSmartAgents(model_file_names)
    env = Env(agents)
    u = epoch_greedy(env)
    rewards_sum, rewards_mean = count_rewards(env)
    cars_out = env.cars_out
    if saveJson:
        exportData = ExportData(learningMethod='DQN',
                                learningEpochs=0,
                                nets=env.global_memories,
                                netName='env4',
                                densityName='learnt_' +
                                str(Globals().greedy_run_no))
        exportData.saveToJson()
    maximum_possible_cars_out = Globals().u_value * Globals(
    ).vp.max_time_greedy * 8
    cars_out_percentage = round(100 * cars_out / maximum_possible_cars_out, 2)
    print(
        f'gready run {Globals().greedy_run_no} - rewards_mean:{round(rewards_mean, 2)} rewar'
        f'ds_sum:{round(rewards_sum, 0)}. Do układu wjechało {round(sum(sum(u)), 0)} pojazdów.'
        f' Wyjechało {round(cars_out, 0)}. Układ opuściło pr'
        f'ocentowo pojazdów:{cars_out_percentage}')
    Globals().greedy_run_no += 1
    return rewards_mean, rewards_sum, cars_out, agents, sum(
        sum(u)), cars_out_percentage
示例#2
0
def run_learnt_greedy(saveJson=False):
    Globals().cars_out_memory = []
    Globals().cars_in_memory = []
    saveJson = True
    model_file_names = [
        'static_files/model-agent0.h5', 'static_files/model-agent1.h5',
        'static_files/model-agent2.h5', 'static_files/model-agent3.h5'
    ]
    agents = get_LearnSmartAgents(model_file_names)
    # print('weights!',agents[0].model.weights[0])
    env = Env(agents)
    epoch_greedy(env)
    # env.update_memory_rewards() # TODO czy to mozna odkomentowac?
    rewards_sum, rewards_mean = count_rewards(env)
    cars_out = env.cars_out
    print('cars_out', cars_out)
    if saveJson:
        exportData = ExportData(learningMethod='DQN',
                                learningEpochs=0,
                                nets=env.global_memories,
                                netName='polibuda',
                                densityName='learnt_' +
                                str(Globals().greedy_run_no))
        exportData.saveToJson()
        # print('exported')
    maximum_possible_cars_out = Globals().u_value * Globals().vp(
    ).max_time_greedy * 8
    print('memory losowych', Globals().actions_memory)
    print('max greedy', max([max(x) for x in env.x]))
    print(
        f'gready run {Globals().greedy_run_no} - rewards_mean:{rewards_mean} rewards_sum:{rewards_sum} cars_out:{cars_out} procentowo:{float(cars_out)/maximum_possible_cars_out}'
    )
    Globals().greedy_run_no += 1
    return rewards_mean, rewards_sum, cars_out, agents
示例#3
0
def run_learnt_greedy(saveJson=False):
    # saveJson = True
    model_file_names = ['static_files/model-agent0.h5']
    agents = get_LearnSmartAgents(model_file_names)
    # print('weights!',agents[0].model.weights[0])
    env = Env(agents)
    epoch_greedy(env)
    # env.update_memory_rewards() # TODO czy to mozna odkomentowac?
    rewards_sum, rewards_mean = count_rewards(env)
    cars_out = env.cars_out
    if saveJson:
        exportData = ExportData(learningMethod='DQN',
                                learningEpochs=0,
                                nets=env.global_memories,
                                netName='net11',
                                densityName='learnt_' +
                                str(Globals().greedy_run_no))
        exportData.saveToJson()
    Globals().greedy_run_no += 1
    # print(f'gready run - rewards_mean:{rewards_mean} rewards_sum:{rewards_sum} cars_out:{cars_out}')
    return rewards_mean, rewards_sum, cars_out
示例#4
0
def run_learnt_greedy(saveJson=False):
    model_file_names = [
        'static_files/model-agent0.h5', 'static_files/model-agent1.h5',
        'static_files/model-agent2.h5'
    ]
    agents = get_LearnSmartAgents(model_file_names)
    env = Env(agents)
    epoch_greedy(env)
    env.update_memory_rewards()
    rewards_sum, rewards_mean = count_rewards(env)
    cars_out = env.cars_out
    if saveJson:
        exportData = ExportData(learningMethod='DQN',
                                learningEpochs=0,
                                nets=env.global_memories,
                                netName='net4',
                                densityName='learnt-' +
                                str(Globals().greedy_run_no))
        exportData.saveToJson()
    Globals().greedy_run_no += 1
    print(
        f'rewards_mean:{rewards_mean} rewards_sum:{rewards_sum} cars_out:{cars_out}'
    )
    return rewards_mean, rewards_sum, cars_out