def runTest(conf): fiberPropotion, Size, trial, Rank, max_time, dir = conf print( "Running video trial with the following:\n\tProporion of Fibers = {}\n\tSize = {}\n\tRank = {}\n\tTrialNumber = {}\n\tMax Time = {}" .format(fiberPropotion, Size, Rank, trial, maxtime)) numberOfFibers = Size**2 FibersSampled = max(int(numberOfFibers * fiberPropotion), 1) # Create tensor X = videoToTensor("600Test.mp4") # init starting A_init = initDecomposition(Size, Rank) b0 = 0.25 error, _ = AdaCPDTime(X, b0, FibersSampled, max_time, A_init, sample_interval=0.5, eta=1) saveAdaTimeTrial(X, fiberPropotion, Size, trial, Rank, b0, max_time, error, dir)
def runTest(conf): fiberPropotion, Size, trial, Rank, max_time, nu, eps, lamb = conf print( "Running trial with the following:\n\tProporion of Fibers = {}\n\tSize = {}\n\tRank = {}\n\tTrialNumber = {}\n\tMax Time = {}\n\tnu = {}\n\teps={}" .format(fiberPropotion, Size, Rank, trial, maxtime, nu, eps)) # Create tensor X = createTensor(Size, Rank) # init starting A_init = initDecomposition(Size, Rank) # X, F, sketching_rates, lamb, eps, eta, Hinit, max_time ,sample_interval=.5 _, _, _, error, rates = CPDMWUTime(X, Rank, fiberPropotion, lamb, eps, nu, A_init, max_time, sample_interval=0.5) return sum([error[x] for x in error.keys() if x > 5]) / len( [error[x] for x in error.keys() if x > 5])
def runTest(conf): print("running") fiberPropotion, Size, trial, Rank, max_time, dir, c_eps, c_eta = conf random.seed eps = 1 / (c_eps * len(fiberPropotion)) eta = sqrt(2 * log(len(fiberPropotion)) / c_eta) lamb = 0.001 if eps > 1: print("eps") return # Create tensor X = createTensor(Size, Rank) # init starting A_init = initDecomposition(Size, Rank) b0 = 0.25 # X, F, sketching_rates, lamb, eps, eta, Hinit, max_time ,sample_interval=.5 print( "Running trial with the following:\n\tProporion of Fibers = {}\n\tSize = {}\n\tRank = {}\n\tTrialNumber = {}\n\tMax Time = {}" .format(fiberPropotion, Size, Rank, trial, maxtime)) print("\tc_eps = {}\n\teps={}\n\tc_eta={}\n\teta={}".format( c_eps, eps, c_eta, eta)) _, _, _, error, rates = CPDMWUTime(X, Rank, fiberPropotion, lamb, eps, eta, A_init, max_time, sample_interval=0.5) saveCPDTimeTrial( X, fiberPropotion, lamb, eps, eta, Size, trial, Rank, max_time, error, rates, c_eps, c_eta, dir, )
def runTest(conf): fiberPropotion, Size, trial, Rank, max_time,dir = conf print("Running trial with the following:\n\tProporion of Fibers = {}\n\tSize = {}\n\tRank = {}\n\tTrialNumber = {}\n\tMax Time = {}".format(fiberPropotion, Size, Rank, trial, maxtime)) #Create tensor X = videoToTensor('600Test.mp4') #init starting A_init = initDecomposition(Size,Rank) #X, F, sketching_rates, lamb, eps, nu, Hinit, max_time ,sample_interval=.5 eps = 1/(1.2len(fiberPropotion)) nu = sqrt(2 * log(len(fiberPropotion))/50) lamb = .001 A,B,C,error,rates = CPDMWUTime(X, Rank, fiberPropotion, lamb, eps, nu, A_init, max_time,sample_interval=.5) saveCPDTimeTrial(X,A,B,C, fiberPropotion, lamb, eps, nu, Size, trial, Rank, max_time, error,rates,dir)
eta_ada = 1 iterations_total = 100 lamb = 0.01 proprtions = np.linspace(0.01, 1, num=10) eps = 1 / (len(proprtions)) eta_cpd = sqrt(2 * log(len(proprtions))) X = createTensor(Size, Rank) # init starting A_init = initDecomposition(Size, Rank) A, B, C = A_init[0], A_init[1], A_init[2] numberOfFibers = Size ** 2 FibersSampled = (numberOfFibers * proprtions).astype(int) n_mb = 100 # 200*200//5#FibersSampled[5] norm_x = linalg.norm(X) errors = {0: ("init", error(X, [A, B, C], norm_x))} start_time = time.time() configurationada = collections.namedtuple( "Configuration", "X b0 fibers A B C eta Gt norm_x iterations start_time errors" )