def DetectObjectFromImage(beforeImage, afterImage, beforeGrayImage, afterGrayImage): resizeRate = GetContour.SquareDetectAndReturnRateAsSquare(beforeGrayImage) beforeImage = CustomOpenCV.ResizeImageAsRate(beforeImage, resizeRate) beforeGrayImage = CustomOpenCV.ResizeImageAsRate(beforeGrayImage, resizeRate) afterImage = CustomOpenCV.ResizeImageAsRate(afterImage, resizeRate) afterGrayImage = CustomOpenCV.ResizeImageAsRate(afterGrayImage, resizeRate) squareContourData = DetectBackgroundSquare.DetectBackgroundSquareFromImage( beforeImage) #형광색 인식으로 점 4개 찾는 함수 #squareContourData = DetectBlackBoardContourFromOriginImage(beforeGrayImage) # 굴곡진 큰 사각형 정사각형으로 보정 perspectiveUpdatedBeforeImage = ImageMatrixMove.ImageMatrixMove( beforeImage, squareContourData) perspectiveUpdatedAfterImage = ImageMatrixMove.ImageMatrixMove( afterImage, squareContourData) perspectiveUpdatedBeforeImage = CustomOpenCV.ResizeImageAsWidth( perspectiveUpdatedBeforeImage, DefineManager.IMAGE_WIDTH) perspectiveUpdatedAfterImage = CustomOpenCV.ResizeImageAsWidth( perspectiveUpdatedAfterImage, DefineManager.IMAGE_WIDTH) # Resize image as shape [ rateHeight, DefineManager.IMAGE_WIDTH ] #CustomOpenCV.ShowImagesWithName([perspectiveUpdatedBeforeImage, perspectiveUpdatedAfterImage], # ["perspectiveUpdatedBeforeImage", "perspectiveUpdatedAfterImage"]) perspectiveUpdatedBeforeGrayImage = cv2.cvtColor( perspectiveUpdatedBeforeImage, cv2.COLOR_BGR2GRAY) perspectiveUpdatedAfterGrayImage = cv2.cvtColor( perspectiveUpdatedAfterImage, cv2.COLOR_BGR2GRAY) morphologyKernel = np.ones( (Setting.DefineManager.MORPHOLOGY_MASK_SIZE + 1, Setting.DefineManager.MORPHOLOGY_MASK_SIZE + 1), np.uint8) perspectiveUpdatedBeforeMorphologyGrayImage = cv2.morphologyEx( perspectiveUpdatedBeforeGrayImage, cv2.MORPH_OPEN, morphologyKernel) perspectiveUpdatedAfterMorphologyGrayImage = cv2.morphologyEx( perspectiveUpdatedAfterGrayImage, cv2.MORPH_OPEN, morphologyKernel) # Reduce image noise beforeThresholdedBlackBoardImage = cv2.adaptiveThreshold( perspectiveUpdatedBeforeMorphologyGrayImage, Setting.DefineManager.SET_IMAGE_WHITE_COLOR, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, Setting.DefineManager.NEIGHBORHOOD_MASK_SIZE, 10) afterThresholdedBlackBoardImage = cv2.adaptiveThreshold( perspectiveUpdatedAfterMorphologyGrayImage, Setting.DefineManager.SET_IMAGE_WHITE_COLOR, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, Setting.DefineManager.NEIGHBORHOOD_MASK_SIZE, 10) # Adaptive Threshold Image #CustomOpenCV.ShowImagesWithName([beforeThresholdedBlackBoardImage, afterThresholdedBlackBoardImage], ['beforeThresholdedBlackBoardImage', 'afterThresholdedBlackBoardImage']) differenceBasedOnThreshImage = cv2.absdiff( beforeThresholdedBlackBoardImage, afterThresholdedBlackBoardImage) differenceBasedOnThreshImage[ differenceBasedOnThreshImage > Setting.DefineManager. EACH_IMAGE_DIFFERENCE_THRESHOLD] = Setting.DefineManager.SET_IMAGE_WHITE_COLOR # Detect each image difference from Threshold Image #CustomOpenCV.ShowImagesWithName([differenceBasedOnThreshImage], ["differenceBasedOnThreshImage"]) objectFoundedImage = GetContour.GetObjectImage( perspectiveUpdatedBeforeImage, perspectiveUpdatedAfterImage) humanDetectedContour, contourLineDrawImage = GetContour.GetContour( objectFoundedImage, perspectiveUpdatedAfterImage) GetContour.FindNavel(humanDetectedContour, contourLineDrawImage) importantPoint = GetContour.AngleAsDealWithPointFromContours( humanDetectedContour, contourLineDrawImage) return [ beforeThresholdedBlackBoardImage, afterThresholdedBlackBoardImage, differenceBasedOnThreshImage, humanDetectedContour ]
def DetectObjectFromImage(beforeImage, afterImage, beforeGrayImage, afterGrayImage): resizeRate = GetContour.SquareDetectAndReturnRateAsSquare(beforeGrayImage) beforeImage = CustomOpenCV.ResizeImageAsRate(beforeImage, resizeRate) beforeGrayImage = CustomOpenCV.ResizeImageAsRate(beforeGrayImage, resizeRate) afterImage = CustomOpenCV.ResizeImageAsRate(afterImage, resizeRate) afterGrayImage = CustomOpenCV.ResizeImageAsRate(afterGrayImage, resizeRate) #squareContourData = DetectBackgroundSquare.DetectBackgroundSquareFromImage(beforeImage) #형광색 인식으로 점 4개 찾는 함수 # in mac # this function is not working and falling loop. squareContourData = DetectBlackBoardContourFromOriginImage(beforeGrayImage) # 굴곡진 큰 사각형 정사각형으로 보정 perspectiveUpdatedBeforeImage = ImageMatrixMove.ImageMatrixMove( beforeImage, squareContourData) perspectiveUpdatedAfterImage = ImageMatrixMove.ImageMatrixMove( afterImage, squareContourData) perspectiveUpdatedBeforeImage = CustomOpenCV.ResizeImageAsWidth( perspectiveUpdatedBeforeImage, DefineManager.IMAGE_WIDTH) perspectiveUpdatedAfterImage = CustomOpenCV.ResizeImageAsWidth( perspectiveUpdatedAfterImage, DefineManager.IMAGE_WIDTH) # Resize image as shape [ rateHeight, DefineManager.IMAGE_WIDTH ] #CustomOpenCV.ShowImagesWithName([perspectiveUpdatedBeforeImage, perspectiveUpdatedAfterImage], # ["perspectiveUpdatedBeforeImage", "perspectiveUpdatedAfterImage"]) perspectiveUpdatedBeforeGrayImage = cv2.cvtColor( perspectiveUpdatedBeforeImage, cv2.COLOR_BGR2GRAY) perspectiveUpdatedAfterGrayImage = cv2.cvtColor( perspectiveUpdatedAfterImage, cv2.COLOR_BGR2GRAY) morphologyKernel = np.ones( (Setting.DefineManager.MORPHOLOGY_MASK_SIZE + 1, Setting.DefineManager.MORPHOLOGY_MASK_SIZE + 1), np.uint8) perspectiveUpdatedBeforeMorphologyGrayImage = cv2.morphologyEx( perspectiveUpdatedBeforeGrayImage, cv2.MORPH_OPEN, morphologyKernel) perspectiveUpdatedAfterMorphologyGrayImage = cv2.morphologyEx( perspectiveUpdatedAfterGrayImage, cv2.MORPH_OPEN, morphologyKernel) # Reduce image noise beforeThresholdedBlackBoardImage = cv2.adaptiveThreshold( perspectiveUpdatedBeforeMorphologyGrayImage, Setting.DefineManager.SET_IMAGE_WHITE_COLOR, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, Setting.DefineManager.NEIGHBORHOOD_MASK_SIZE, 10) afterThresholdedBlackBoardImage = cv2.adaptiveThreshold( perspectiveUpdatedAfterMorphologyGrayImage, Setting.DefineManager.SET_IMAGE_WHITE_COLOR, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, Setting.DefineManager.NEIGHBORHOOD_MASK_SIZE, 10) # Adaptive Threshold Image #CustomOpenCV.ShowImagesWithName([beforeThresholdedBlackBoardImage, afterThresholdedBlackBoardImage], ['beforeThresholdedBlackBoardImage', 'afterThresholdedBlackBoardImage']) differenceBasedOnThreshImage = cv2.absdiff( beforeThresholdedBlackBoardImage, afterThresholdedBlackBoardImage) differenceBasedOnThreshImage[ differenceBasedOnThreshImage > Setting.DefineManager. EACH_IMAGE_DIFFERENCE_THRESHOLD] = Setting.DefineManager.SET_IMAGE_WHITE_COLOR # Detect each image difference from Threshold Image #CustomOpenCV.ShowImagesWithName([differenceBasedOnThreshImage], ["differenceBasedOnThreshImage"]) objectFoundedImage = GetContour.GetObjectImage( perspectiveUpdatedBeforeImage, perspectiveUpdatedAfterImage) humanDetectedContour, contourLineDrawImage = GetContour.GetContour( objectFoundedImage, perspectiveUpdatedAfterImage) faceMinY, faceMaxY = GetContour.DetectFaceAndGetY( perspectiveUpdatedAfterImage) navelPoint, faceRate, maxY, minY = GetContour.FindNavel( humanDetectedContour, faceMaxY, contourLineDrawImage) height = maxY - minY importantPoint = GetContour.AngleAsDealWithPointFromContours( humanDetectedContour, contourLineDrawImage) beforeDrawImage = np.copy(perspectiveUpdatedBeforeImage) afterDrawImage = np.copy(perspectiveUpdatedAfterImage) functionParameter = [] for index in range(len(importantPoint)): xArray = [] yArray = [] for point in importantPoint[index]: x, y = point.ravel() xArray.append(x) yArray.append(y) xArray = np.asarray(xArray) yArray = np.asarray(yArray) if xArray.shape[0] > 0: # ax + b = y (a, b 를 받아옴) functionCharacteristic = sp.polyfit( xArray, yArray, DefineManager.FUNCTION_DIMENSION) functionParameter.append(functionCharacteristic) yRegressionArray = sp.polyval(functionCharacteristic, xArray) err = np.sqrt( sum((yArray - yRegressionArray)**2) / yArray.shape[0]) pointA, pointB = GetContour.GetStartAndEndPointsFromLine( functionCharacteristic, xArray) cv2.line(beforeDrawImage, pointA, pointB, DefineManager.RGB_COLOR_GREEN, 1) cv2.line(afterDrawImage, pointA, pointB, DefineManager.RGB_COLOR_GREEN, 1) CustomOpenCV.ShowImagesWithName([beforeDrawImage, afterDrawImage]) return [ perspectiveUpdatedBeforeImage, perspectiveUpdatedAfterImage, height, navelPoint, humanDetectedContour, functionParameter, beforeDrawImage, faceRate ]