def saveCSV(self, filename, fold=None): import sys sys.path.append("..") import Utils.TableUtils as TableUtils dicts = self.toDict() if fold != None: for d in dicts: d["fold"] = fold TableUtils.addToCSV(dicts, filename, g_evaluatorFieldnames)
def analyzeLinearDistance(corpusElements): interactionEdges = 0 interactionLinearDistanceCounts = {} allEntitiesLinearDistanceCounts = {} for sentence in corpusElements.sentences: sentenceGraph = sentence.sentenceGraph interactionEdges += len(sentence.interactions) # Linear distance between end tokens of interaction edges for interaction in sentence.interactions: e1 = sentence.entitiesById[interaction.get("e1")] e2 = sentence.entitiesById[interaction.get("e2")] t1 = sentenceGraph.entityHeadTokenByEntity[e1] t2 = sentenceGraph.entityHeadTokenByEntity[e2] linDistance = int(t1.get("id").split("_")[-1]) - int( t2.get("id").split("_")[-1]) if linDistance < 0: linDistance *= -1 if not interactionLinearDistanceCounts.has_key(linDistance): interactionLinearDistanceCounts[linDistance] = 0 interactionLinearDistanceCounts[linDistance] += 1 # Linear distance between all entities for i in range(len(sentence.entities) - 1): for j in range(i + 1, len(sentence.entities)): tI = sentenceGraph.entityHeadTokenByEntity[ sentence.entities[i]] tJ = sentenceGraph.entityHeadTokenByEntity[ sentence.entities[j]] linDistance = int(tI.get("id").split("_")[-1]) - int( tJ.get("id").split("_")[-1]) if linDistance < 0: linDistance *= -1 if not allEntitiesLinearDistanceCounts.has_key(linDistance): allEntitiesLinearDistanceCounts[linDistance] = 0 allEntitiesLinearDistanceCounts[linDistance] += 1 print >> sys.stderr, "=== Linear Distance ===" print >> sys.stderr, "Interaction edges:", interactionEdges print >> sys.stderr, "Entity head token linear distance for interaction edges:" printPathDistribution(interactionLinearDistanceCounts) if options.output != None: interactionLinearDistanceCounts["corpus"] = options.input interactionLinearDistanceCounts["parse"] = options.parse TableUtils.addToCSV( interactionLinearDistanceCounts, options.output + "/interactionEdgeLinearDistance.csv") print >> sys.stderr, "Linear distance between head tokens of all entities:" printPathDistribution(allEntitiesLinearDistanceCounts) if options.output != None: allEntitiesLinearDistanceCounts["corpus"] = options.input allEntitiesLinearDistanceCounts["parse"] = options.parse TableUtils.addToCSV(allEntitiesLinearDistanceCounts, options.output + "/allEntitiesLinearDistance.csv")
def analyzeLinearDistance(corpusElements): interactionEdges = 0 interactionLinearDistanceCounts = {} allEntitiesLinearDistanceCounts = {} for sentence in corpusElements.sentences: sentenceGraph = sentence.sentenceGraph interactionEdges += len(sentence.interactions) # Linear distance between end tokens of interaction edges for interaction in sentence.interactions: e1 = sentence.entitiesById[interaction.get("e1")] e2 = sentence.entitiesById[interaction.get("e2")] t1 = sentenceGraph.entityHeadTokenByEntity[e1] t2 = sentenceGraph.entityHeadTokenByEntity[e2] linDistance = int(t1.get("id").split("_")[-1]) - int(t2.get("id").split("_")[-1]) if linDistance < 0: linDistance *= -1 if not interactionLinearDistanceCounts.has_key(linDistance): interactionLinearDistanceCounts[linDistance] = 0 interactionLinearDistanceCounts[linDistance] += 1 # Linear distance between all entities for i in range(len(sentence.entities)-1): for j in range(i+1,len(sentence.entities)): tI = sentenceGraph.entityHeadTokenByEntity[sentence.entities[i]] tJ = sentenceGraph.entityHeadTokenByEntity[sentence.entities[j]] linDistance = int(tI.get("id").split("_")[-1]) - int(tJ.get("id").split("_")[-1]) if linDistance < 0: linDistance *= -1 if not allEntitiesLinearDistanceCounts.has_key(linDistance): allEntitiesLinearDistanceCounts[linDistance] = 0 allEntitiesLinearDistanceCounts[linDistance] += 1 print >> sys.stderr, "=== Linear Distance ===" print >> sys.stderr, "Interaction edges:", interactionEdges print >> sys.stderr, "Entity head token linear distance for interaction edges:" printPathDistribution(interactionLinearDistanceCounts) if options.output != None: interactionLinearDistanceCounts["corpus"] = options.input interactionLinearDistanceCounts["parse"] = options.parse TableUtils.addToCSV(interactionLinearDistanceCounts, options.output+"/interactionEdgeLinearDistance.csv") print >> sys.stderr, "Linear distance between head tokens of all entities:" printPathDistribution(allEntitiesLinearDistanceCounts) if options.output != None: allEntitiesLinearDistanceCounts["corpus"] = options.input allEntitiesLinearDistanceCounts["parse"] = options.parse TableUtils.addToCSV(allEntitiesLinearDistanceCounts, options.output+"/allEntitiesLinearDistance.csv")
def crossValidate(exampleBuilder, corpusElements, examples, options, timer): parameterOptimizationSet = None constantParameterOptimizationSet = None if options.paramOptData != None: print >> sys.stderr, "Separating parameter optimization set" parameterOptimizationDivision = Example.makeCorpusDivision(corpusElements, float(options.paramOptData)) exampleSets = Example.divideExamples(examples, parameterOptimizationDivision) constantParameterOptimizationSet = exampleSets[0] parameterOptimizationSet = constantParameterOptimizationSet optDocs = 0 for k,v in parameterOptimizationDivision.iteritems(): if v == 0: del corpusElements.documentsById[k] optDocs += 1 print >> sys.stderr, " Documents for parameter optimization:", optDocs discardedParameterCombinations = [] print >> sys.stderr, "Dividing data into folds" corpusFolds = Example.makeCorpusFolds(corpusElements, options.folds[0]) exampleSets = Example.divideExamples(examples, corpusFolds) keys = exampleSets.keys() keys.sort() evaluations = [] for key in keys: testSet = exampleSets[key] for example in testSet: example[3]["visualizationSet"] = key + 1 trainSet = [] for key2 in keys: if key != key2: trainSet.extend(exampleSets[key2]) print >> sys.stderr, "Fold", str(key + 1) # Create classifier object if options.output != None: if not os.path.exists(options.output+"/fold"+str(key+1)): os.mkdir(options.output+"/fold"+str(key+1)) # if not os.path.exists(options.output+"/fold"+str(key+1)+"/classifier"): # os.mkdir(options.output+"/fold"+str(key+1)+"/classifier") classifier = Classifier(workDir = options.output + "/fold"+str(key + 1)) else: classifier = Classifier() classifier.featureSet = exampleBuilder.featureSet # Optimize #################### # Check whether there is need for included param opt set if parameterOptimizationSet == None and options.folds[1] == 0: # 8-1-1 folds assert(len(keys) > 1) if keys.index(key) == 0: parameterOptimizationSetKey = keys[-1] else: parameterOptimizationSetKey = keys[keys.index(key)-1] parameterOptimizationSet = exampleSets[parameterOptimizationSetKey] trainSet = [] for key2 in keys: if key2 != key and key2 != parameterOptimizationSetKey: trainSet.extend(exampleSets[key2]) if parameterOptimizationSet != None: # constant external parameter optimization set evaluationArgs = {"classSet":exampleBuilder.classSet} if options.parameters != None: paramDict = splitParameters(options.parameters) bestResults = classifier.optimize([trainSet], [parameterOptimizationSet], paramDict, Evaluation, evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations) else: bestResults = classifier.optimize([trainSet], [parameterOptimizationSet], evaluationClass=Evaluation, evaluationArgs=evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations) else: # nested x-fold parameter optimization assert (options.folds[1] >= 2) optimizationFolds = Example.makeExampleFolds(trainSet, options.folds[1]) optimizationSets = Example.divideExamples(trainSet, optimizationFolds) optimizationSetList = [] optSetKeys = optimizationSets.keys() optSetKeys.sort() for optSetKey in optSetKeys: optimizationSetList.append(optimizationSets[optSetKey]) evaluationArgs = {"classSet":exampleBuilder.classSet} if options.parameters != None: paramDict = splitParameters(options.parameters) bestResults = classifier.optimize(optimizationSetList, optimizationSetList, paramDict, Evaluation, evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations) else: bestResults = classifier.optimize(optimizationSetList, optimizationSetList, evaluationClass=Evaluation, evaluationArgs=evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations) # Classify print >> sys.stderr, "Classifying test data" bestParams = bestResults[2] if bestParams.has_key("timeout"): del bestParams["timeout"] print >> sys.stderr, "Parameters:", bestParams print >> sys.stderr, "Training", startTime = time.time() classifier.train(trainSet, bestParams) print >> sys.stderr, "(Time spent:", time.time() - startTime, "s)" print >> sys.stderr, "Testing", startTime = time.time() predictions = classifier.classify(testSet) if options.output != None: pdict = [] fieldnames = ["class","prediction","id","fold"] for p in predictions: if "typed" in exampleBuilder.styles: pdict.append( {"class":exampleBuilder.classSet.getName(p[0][1]), "prediction":exampleBuilder.classSet.getName(p[1]), "id":p[0][0], "fold":key} ) else: pdict.append( {"class":p[0][1], "prediction":p[1], "id":p[0][0], "fold":key} ) TableUtils.addToCSV(pdict, options.output +"/predictions.csv", fieldnames) print >> sys.stderr, "(Time spent:", time.time() - startTime, "s)" # Calculate statistics evaluation = Evaluation(predictions, classSet=exampleBuilder.classSet) print >> sys.stderr, evaluation.toStringConcise() print >> sys.stderr, timer.toString() evaluations.append(evaluation) # Save example sets if options.output != None: print >> sys.stderr, "Saving example sets to", options.output Example.writeExamples(exampleSets[0], options.output +"/fold"+str(key+1) + "/examplesTest.txt") Example.writeExamples(exampleSets[1], options.output +"/fold"+str(key+1) + "/examplesTrain.txt") if parameterOptimizationSet == None: for k,v in optimizationSets.iteritems(): Example.writeExamples(v, options.output +"/fold"+str(key+1) + "/examplesOptimizationSet" + str(k) + ".txt") else: Example.writeExamples(parameterOptimizationSet, options.output +"/fold"+str(key+1) + "/examplesOptimizationSetPredefined.txt") TableUtils.writeCSV(bestResults[2], options.output +"/fold"+str(key+1) + "/parameters.csv") evaluation.saveCSV(options.output +"/fold"+str(key+1) + "/results.csv") print >> sys.stderr, "Compressing folder" zipTree(options.output, "fold"+str(key+1)) parameterOptimizationSet = constantParameterOptimizationSet print >> sys.stderr, "Cross-validation Results" for i in range(len(evaluations)): print >> sys.stderr, evaluations[i].toStringConcise(" Fold "+str(i)+": ") averageResult = Evaluation.average(evaluations) print >> sys.stderr, averageResult.toStringConcise(" Avg: ") pooledResult = Evaluation.pool(evaluations) print >> sys.stderr, pooledResult.toStringConcise(" Pool: ") if options.output != None: for i in range(len(evaluations)): evaluations[i].saveCSV(options.output+"/results.csv", i) averageResult.saveCSV(options.output+"/results.csv", "Avg") pooledResult.saveCSV(options.output+"/results.csv", "Pool") averageResult.saveCSV(options.output+"/resultsAverage.csv") pooledResult.saveCSV(options.output+"/resultsPooled.csv") # Visualize if options.visualization != None: visualize(sentences, pooledResult.classifications, options, exampleBuilder) # Save interactionXML if options.resultsToXML != None: classSet = None if "typed" in exampleBuilder.styles: classSet = exampleBuilder.classSet Example.writeToInteractionXML(pooledResult.classifications, corpusElements, options.resultsToXML, classSet)
def crossValidate(exampleBuilder, corpusElements, examples, options, timer): parameterOptimizationSet = None constantParameterOptimizationSet = None if options.paramOptData != None: print >> sys.stderr, "Separating parameter optimization set" parameterOptimizationDivision = Example.makeCorpusDivision( corpusElements, float(options.paramOptData)) exampleSets = Example.divideExamples(examples, parameterOptimizationDivision) constantParameterOptimizationSet = exampleSets[0] parameterOptimizationSet = constantParameterOptimizationSet optDocs = 0 for k, v in parameterOptimizationDivision.iteritems(): if v == 0: del corpusElements.documentsById[k] optDocs += 1 print >> sys.stderr, " Documents for parameter optimization:", optDocs discardedParameterCombinations = [] print >> sys.stderr, "Dividing data into folds" corpusFolds = Example.makeCorpusFolds(corpusElements, options.folds[0]) exampleSets = Example.divideExamples(examples, corpusFolds) keys = exampleSets.keys() keys.sort() evaluations = [] for key in keys: testSet = exampleSets[key] for example in testSet: example[3]["visualizationSet"] = key + 1 trainSet = [] for key2 in keys: if key != key2: trainSet.extend(exampleSets[key2]) print >> sys.stderr, "Fold", str(key + 1) # Create classifier object if options.output != None: if not os.path.exists(options.output + "/fold" + str(key + 1)): os.mkdir(options.output + "/fold" + str(key + 1)) # if not os.path.exists(options.output+"/fold"+str(key+1)+"/classifier"): # os.mkdir(options.output+"/fold"+str(key+1)+"/classifier") classifier = Classifier(workDir=options.output + "/fold" + str(key + 1)) else: classifier = Classifier() classifier.featureSet = exampleBuilder.featureSet # Optimize #################### # Check whether there is need for included param opt set if parameterOptimizationSet == None and options.folds[ 1] == 0: # 8-1-1 folds assert (len(keys) > 1) if keys.index(key) == 0: parameterOptimizationSetKey = keys[-1] else: parameterOptimizationSetKey = keys[keys.index(key) - 1] parameterOptimizationSet = exampleSets[parameterOptimizationSetKey] trainSet = [] for key2 in keys: if key2 != key and key2 != parameterOptimizationSetKey: trainSet.extend(exampleSets[key2]) if parameterOptimizationSet != None: # constant external parameter optimization set evaluationArgs = {"classSet": exampleBuilder.classSet} if options.parameters != None: paramDict = splitParameters(options.parameters) bestResults = classifier.optimize( [trainSet], [parameterOptimizationSet], paramDict, Evaluation, evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations) else: bestResults = classifier.optimize( [trainSet], [parameterOptimizationSet], evaluationClass=Evaluation, evaluationArgs=evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations) else: # nested x-fold parameter optimization assert (options.folds[1] >= 2) optimizationFolds = Example.makeExampleFolds( trainSet, options.folds[1]) optimizationSets = Example.divideExamples(trainSet, optimizationFolds) optimizationSetList = [] optSetKeys = optimizationSets.keys() optSetKeys.sort() for optSetKey in optSetKeys: optimizationSetList.append(optimizationSets[optSetKey]) evaluationArgs = {"classSet": exampleBuilder.classSet} if options.parameters != None: paramDict = splitParameters(options.parameters) bestResults = classifier.optimize( optimizationSetList, optimizationSetList, paramDict, Evaluation, evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations) else: bestResults = classifier.optimize( optimizationSetList, optimizationSetList, evaluationClass=Evaluation, evaluationArgs=evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations) # Classify print >> sys.stderr, "Classifying test data" bestParams = bestResults[2] if bestParams.has_key("timeout"): del bestParams["timeout"] print >> sys.stderr, "Parameters:", bestParams print >> sys.stderr, "Training", startTime = time.time() classifier.train(trainSet, bestParams) print >> sys.stderr, "(Time spent:", time.time() - startTime, "s)" print >> sys.stderr, "Testing", startTime = time.time() predictions = classifier.classify(testSet) if options.output != None: pdict = [] fieldnames = ["class", "prediction", "id", "fold"] for p in predictions: if "typed" in exampleBuilder.styles: pdict.append({ "class": exampleBuilder.classSet.getName(p[0][1]), "prediction": exampleBuilder.classSet.getName(p[1]), "id": p[0][0], "fold": key }) else: pdict.append({ "class": p[0][1], "prediction": p[1], "id": p[0][0], "fold": key }) TableUtils.addToCSV(pdict, options.output + "/predictions.csv", fieldnames) print >> sys.stderr, "(Time spent:", time.time() - startTime, "s)" # Calculate statistics evaluation = Evaluation(predictions, classSet=exampleBuilder.classSet) print >> sys.stderr, evaluation.toStringConcise() print >> sys.stderr, timer.toString() evaluations.append(evaluation) # Save example sets if options.output != None: print >> sys.stderr, "Saving example sets to", options.output Example.writeExamples( exampleSets[0], options.output + "/fold" + str(key + 1) + "/examplesTest.txt") Example.writeExamples( exampleSets[1], options.output + "/fold" + str(key + 1) + "/examplesTrain.txt") if parameterOptimizationSet == None: for k, v in optimizationSets.iteritems(): Example.writeExamples( v, options.output + "/fold" + str(key + 1) + "/examplesOptimizationSet" + str(k) + ".txt") else: Example.writeExamples( parameterOptimizationSet, options.output + "/fold" + str(key + 1) + "/examplesOptimizationSetPredefined.txt") TableUtils.writeCSV( bestResults[2], options.output + "/fold" + str(key + 1) + "/parameters.csv") evaluation.saveCSV(options.output + "/fold" + str(key + 1) + "/results.csv") print >> sys.stderr, "Compressing folder" zipTree(options.output, "fold" + str(key + 1)) parameterOptimizationSet = constantParameterOptimizationSet print >> sys.stderr, "Cross-validation Results" for i in range(len(evaluations)): print >> sys.stderr, evaluations[i].toStringConcise(" Fold " + str(i) + ": ") averageResult = Evaluation.average(evaluations) print >> sys.stderr, averageResult.toStringConcise(" Avg: ") pooledResult = Evaluation.pool(evaluations) print >> sys.stderr, pooledResult.toStringConcise(" Pool: ") if options.output != None: for i in range(len(evaluations)): evaluations[i].saveCSV(options.output + "/results.csv", i) averageResult.saveCSV(options.output + "/results.csv", "Avg") pooledResult.saveCSV(options.output + "/results.csv", "Pool") averageResult.saveCSV(options.output + "/resultsAverage.csv") pooledResult.saveCSV(options.output + "/resultsPooled.csv") # Visualize if options.visualization != None: visualize(sentences, pooledResult.classifications, options, exampleBuilder) # Save interactionXML if options.resultsToXML != None: classSet = None if "typed" in exampleBuilder.styles: classSet = exampleBuilder.classSet Example.writeToInteractionXML(pooledResult.classifications, corpusElements, options.resultsToXML, classSet)
def analyzeLengths(corpusElements): interactionEdges = 0 dependencyEdges = 0 pathsByLength = {} pathsBetweenAllEntitiesByLength = {} for sentence in corpusElements.sentences: sentenceGraph = sentence.sentenceGraph #interactionEdges += len(sentenceGraph.interactionGraph.edges()) interactionEdges += len(sentence.interactions) dependencyEdges += len(sentenceGraph.dependencyGraph.edges()) undirected = sentenceGraph.dependencyGraph.to_undirected() paths = NX10.all_pairs_shortest_path(undirected, cutoff=999) # Shortest path for interaction edge for interaction in sentence.interactions: e1 = sentence.entitiesById[interaction.attrib["e1"]] e2 = sentence.entitiesById[interaction.attrib["e2"]] t1 = sentenceGraph.entityHeadTokenByEntity[e1] t2 = sentenceGraph.entityHeadTokenByEntity[e2] if paths.has_key(t1) and paths[t1].has_key(t2): path = paths[t1][t2] if not pathsByLength.has_key(len(path) - 1): pathsByLength[len(path) - 1] = 0 pathsByLength[len(path) - 1] += 1 else: if not pathsByLength.has_key("none"): pathsByLength["none"] = 0 pathsByLength["none"] += 1 # for intEdge in sentenceGraph.interactionGraph.edges(): # if paths.has_key(intEdge[0]) and paths[intEdge[0]].has_key(intEdge[1]): # path = paths[intEdge[0]][intEdge[1]] # if not pathsByLength.has_key(len(path)-1): # pathsByLength[len(path)-1] = 0 # pathsByLength[len(path)-1] += 1 # else: # if not pathsByLength.has_key("none"): # pathsByLength["none"] = 0 # pathsByLength["none"] += 1 # Shortest paths between all entities for i in range(len(sentence.entities) - 1): for j in range(i + 1, len(sentence.entities)): tI = sentenceGraph.entityHeadTokenByEntity[ sentence.entities[i]] tJ = sentenceGraph.entityHeadTokenByEntity[ sentence.entities[j]] if paths.has_key(tI) and paths[tI].has_key(tJ): path = paths[tI][tJ] if not pathsBetweenAllEntitiesByLength.has_key( len(path) - 1): pathsBetweenAllEntitiesByLength[len(path) - 1] = 0 pathsBetweenAllEntitiesByLength[len(path) - 1] += 1 elif tI == tJ: if not pathsBetweenAllEntitiesByLength.has_key(0): pathsBetweenAllEntitiesByLength[0] = 0 pathsBetweenAllEntitiesByLength[0] += 1 else: if not pathsBetweenAllEntitiesByLength.has_key("none"): pathsBetweenAllEntitiesByLength["none"] = 0 pathsBetweenAllEntitiesByLength["none"] += 1 # for i in range(len(sentenceGraph.tokens)-1): # for j in range(i+1,len(sentenceGraph.tokens)): # tI = sentenceGraph.tokens[i] # tJ = sentenceGraph.tokens[j] # if sentenceGraph.tokenIsEntityHead[tI] == None or sentenceGraph.tokenIsEntityHead[tJ] == None: # continue # if paths.has_key(tI) and paths[tI].has_key(tJ): # path = paths[tI][tJ] # if not pathsBetweenAllEntitiesByLength.has_key(len(path)-1): # pathsBetweenAllEntitiesByLength[len(path)-1] = 0 # pathsBetweenAllEntitiesByLength[len(path)-1] += 1 # else: # if not pathsBetweenAllEntitiesByLength.has_key("none"): # pathsBetweenAllEntitiesByLength["none"] = 0 # pathsBetweenAllEntitiesByLength["none"] += 1 print >> sys.stderr, "Interaction edges:", interactionEdges print >> sys.stderr, "Dependency edges:", dependencyEdges print >> sys.stderr, "Shortest path of dependencies for interaction edge:" printPathDistribution(pathsByLength) if options.output != None: pathsByLength["corpus"] = options.input pathsByLength["parse"] = options.parse TableUtils.addToCSV(pathsByLength, options.output + "/pathsByLength.csv") print >> sys.stderr, "Shortest path of dependencies between all entities:" printPathDistribution(pathsBetweenAllEntitiesByLength) if options.output != None: pathsByLength["corpus"] = options.input pathsByLength["parse"] = options.parse TableUtils.addToCSV( pathsBetweenAllEntitiesByLength, options.output + "/pathsBetweenAllEntitiesByLength.csv")
def analyzeLengths(corpusElements): interactionEdges = 0 dependencyEdges = 0 pathsByLength = {} pathsBetweenAllEntitiesByLength = {} for sentence in corpusElements.sentences: sentenceGraph = sentence.sentenceGraph #interactionEdges += len(sentenceGraph.interactionGraph.edges()) interactionEdges += len(sentence.interactions) dependencyEdges += len(sentenceGraph.dependencyGraph.edges()) undirected = sentenceGraph.dependencyGraph.to_undirected() paths = NX10.all_pairs_shortest_path(undirected, cutoff=999) # Shortest path for interaction edge for interaction in sentence.interactions: e1 = sentence.entitiesById[interaction.attrib["e1"]] e2 = sentence.entitiesById[interaction.attrib["e2"]] t1 = sentenceGraph.entityHeadTokenByEntity[e1] t2 = sentenceGraph.entityHeadTokenByEntity[e2] if paths.has_key(t1) and paths[t1].has_key(t2): path = paths[t1][t2] if not pathsByLength.has_key(len(path)-1): pathsByLength[len(path)-1] = 0 pathsByLength[len(path)-1] += 1 else: if not pathsByLength.has_key("none"): pathsByLength["none"] = 0 pathsByLength["none"] += 1 # for intEdge in sentenceGraph.interactionGraph.edges(): # if paths.has_key(intEdge[0]) and paths[intEdge[0]].has_key(intEdge[1]): # path = paths[intEdge[0]][intEdge[1]] # if not pathsByLength.has_key(len(path)-1): # pathsByLength[len(path)-1] = 0 # pathsByLength[len(path)-1] += 1 # else: # if not pathsByLength.has_key("none"): # pathsByLength["none"] = 0 # pathsByLength["none"] += 1 # Shortest paths between all entities for i in range(len(sentence.entities)-1): for j in range(i+1,len(sentence.entities)): tI = sentenceGraph.entityHeadTokenByEntity[sentence.entities[i]] tJ = sentenceGraph.entityHeadTokenByEntity[sentence.entities[j]] if paths.has_key(tI) and paths[tI].has_key(tJ): path = paths[tI][tJ] if not pathsBetweenAllEntitiesByLength.has_key(len(path)-1): pathsBetweenAllEntitiesByLength[len(path)-1] = 0 pathsBetweenAllEntitiesByLength[len(path)-1] += 1 elif tI == tJ: if not pathsBetweenAllEntitiesByLength.has_key(0): pathsBetweenAllEntitiesByLength[0] = 0 pathsBetweenAllEntitiesByLength[0] += 1 else: if not pathsBetweenAllEntitiesByLength.has_key("none"): pathsBetweenAllEntitiesByLength["none"] = 0 pathsBetweenAllEntitiesByLength["none"] += 1 # for i in range(len(sentenceGraph.tokens)-1): # for j in range(i+1,len(sentenceGraph.tokens)): # tI = sentenceGraph.tokens[i] # tJ = sentenceGraph.tokens[j] # if sentenceGraph.tokenIsEntityHead[tI] == None or sentenceGraph.tokenIsEntityHead[tJ] == None: # continue # if paths.has_key(tI) and paths[tI].has_key(tJ): # path = paths[tI][tJ] # if not pathsBetweenAllEntitiesByLength.has_key(len(path)-1): # pathsBetweenAllEntitiesByLength[len(path)-1] = 0 # pathsBetweenAllEntitiesByLength[len(path)-1] += 1 # else: # if not pathsBetweenAllEntitiesByLength.has_key("none"): # pathsBetweenAllEntitiesByLength["none"] = 0 # pathsBetweenAllEntitiesByLength["none"] += 1 print >> sys.stderr, "Interaction edges:", interactionEdges print >> sys.stderr, "Dependency edges:", dependencyEdges print >> sys.stderr, "Shortest path of dependencies for interaction edge:" printPathDistribution(pathsByLength) if options.output != None: pathsByLength["corpus"] = options.input pathsByLength["parse"] = options.parse TableUtils.addToCSV(pathsByLength, options.output+"/pathsByLength.csv") print >> sys.stderr, "Shortest path of dependencies between all entities:" printPathDistribution(pathsBetweenAllEntitiesByLength) if options.output != None: pathsByLength["corpus"] = options.input pathsByLength["parse"] = options.parse TableUtils.addToCSV(pathsBetweenAllEntitiesByLength, options.output+"/pathsBetweenAllEntitiesByLength.csv")