def start(self): measurement = [] for i in range(self.repeat): measure = [] splitted_dataset = cross.split_list(self.raw_data, self.k, True) k_fold = cross.KFold(splitted_dataset) for fold in k_fold: stats, class_prob = NormalDist.calc_normal_stats(fold[0]) confusion_matrices = ConfusionMatrix.ConfusionMatrixStatistic( stats) for item in fold[1]: confusion_matrices.add_result( item[len(item) - 1], NormalDist.get_class(stats, class_prob, item)) measure.append(confusion_matrices.calc_stats()) measurement.append(ConfusionMatrix.Measure.connect(measure)) return ConfusionMatrix.Measure.connect(measurement)
def start(self): measurement = [] for i in range(self.repeat): measure = [] splitted_dataset = cross.split_list(self.raw_data, self.k, True) k_fold = cross.KFold(splitted_dataset) for fold in k_fold: stats, class_prob, buckets = edp.create_dictionary_with_buckets( self.raw_data, fold[0], self.bins) confusion_matrices = ConfusionMatrix.ConfusionMatrixStatistic( stats) for item in fold[1]: confusion_matrices.add_result( item[len(item) - 1], edp.get_class(stats, class_prob, buckets, item)) measure.append(confusion_matrices.calc_stats()) measurement.append(ConfusionMatrix.Measure.connect(measure)) return ConfusionMatrix.Measure.connect(measurement)