示例#1
0
    def data_processing(self):
        self._log.info("Begin Family Size and UMT Analysis")
        umt_stats_outstring = "UMT\tCount"
        family_size_outstring = "Family\tCount"

        for index_key in self._family_data:
            count_list = []

            for k, v in sorted(Counter(self._family_data[index_key]).items(),
                               key=lambda x: x[1],
                               reverse=True):
                umt_stats_outstring += "\n{0}\t{1}".format(k, v)
                count_list.append(str(v))

            c = dict(Counter(count_list))
            for k in natsort.natsorted(c):
                family_size_outstring += "\n{0}\t{1}".format(k, c[k])

        stats_filename = "{0}{1}_UMT_Stats.txt".format(
            self._args.Working_Folder, self._data_source)
        size_filename = "{0}{1}_Family_Size.txt".format(
            self._args.Working_Folder, self._data_source)

        # Deleting the files if they exist prevents a random text file busy OSError I am getting using VBox on Windows.
        Tool_Box.delete([stats_filename, size_filename])

        umt_stats_file = open(
            "{0}{1}_UMT_Stats.txt".format(self._args.Working_Folder,
                                          self._data_source), 'w')

        family_size_file = open(size_filename, "w")

        umt_stats_file.write(umt_stats_outstring)
        family_size_file.write(family_size_outstring)

        umt_stats_file.close()
        family_size_file.close()

        self._log.info(
            "{0} {1} UMT Family Size and Stats Files Written".format(
                self._args.Job_Name, self._data_source))
示例#2
0
def pear_consensus(args, log):
    """
    This will take the input FASTQ files and use PEAR to generate a consensus file.
    :param args:
    :param log:
    :return:
    """
    log.info("Beginning PEAR Consensus")

    fastq_consensus_prefix = "{}{}".format(args.WorkingFolder, args.Job_Name)
    fastq_consensus_file = "{}.assembled.fastq".format(fastq_consensus_prefix)
    discarded_fastq = "{}.discarded.fastq".format(fastq_consensus_prefix)
    r1_unassembled = "{}.unassembled.forward.fastq".format(
        fastq_consensus_prefix)
    r2_unassembled = "{}.unassembled.reverse.fastq".format(
        fastq_consensus_prefix)

    y = "-y {} ".format(args.Memory)
    j = "-j {} ".format(int(args.Spawn) - 1)

    p_value = ''
    if args.PValue:
        p_value = "-p {} ".format(args.PValue)
    min_overlap = ''
    if args.MinOverlap:
        min_overlap = "-v {} ".format(args.MinOverlap)
    quality_threshold = ""
    if args.QualityThreshold:
        quality_threshold = "-q {} ".format(args.QualityThreshold)
    phred_value = ""
    if args.PhredValue:
        phred_value = "-b {} ".format(args.PhredValue)
    test_method = ""
    if args.TestMethod:
        test_method = "-g {}".format(args.TestMethod)
    n = ""
    if args.MinConsensusLength:
        n = "-n {} ".format(args.MinConsensusLength)

    proc = subprocess.run(
        "{}{}Pear{}bin{}./pear -f {} -r {} -o {} {}{}{}{}{}{}{}".format(
            pathlib.Path(__file__).parent.absolute(), os.sep, os.sep, os.sep,
            args.FASTQ1, args.FASTQ2, fastq_consensus_prefix, y, j, n, p_value,
            min_overlap, quality_threshold, phred_value, test_method),
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE,
        shell=True)

    if proc.stderr:
        log.error("{}\n{}\n".format(proc.stderr.decode(),
                                    proc.stdout.decode()))
        return
    else:
        log.info(
            "Begin PEAR Output\n"
            "----------------------------------------------------------------------------------------------------------\n{}"
            "\n----------------------------------------------------------------------------------------------------------\n"
            .format(proc.stdout.decode()))

    file_list = [fastq_consensus_file, r1_unassembled, r2_unassembled]

    if os.stat(discarded_fastq).st_size > 0:
        file_list.append(discarded_fastq)
    else:
        Tool_Box.delete([discarded_fastq])

    return file_list
示例#3
0
def main(command_line_args=None):
    """
    Let's get this party started.
    :param command_line_args:
    """
    start_time = time.time()
    VersionDependencies.python_check()

    if not command_line_args:
        command_line_args = sys.argv

    run_start = datetime.datetime.today().strftime("%H:%M:%S %Y  %a %b %d")
    parser = argparse.ArgumentParser(
        description=
        "A package to map genomic repair scars at defined loci.\n {} v{}".
        format(__package__, __version__),
        formatter_class=argparse.RawTextHelpFormatter)

    parser.add_argument('--options_file',
                        action='store',
                        dest='options_file',
                        required=True,
                        help='File containing program parameters.')

    # Check options file for errors and return object.
    args = error_checking(string_to_boolean(parser))

    log = Tool_Box.Logger(args)
    Tool_Box.log_environment_info(log, args, command_line_args)

    module_name = ""
    log.info("{} v{}".format(__package__, __version__))

    if args.IndelProcessing:
        file_list = []
        if args.Platform == "Illumina" or args.Platform == "Ramsden" or args.Platform == "TruSeq":
            log.info("Sending FASTQ files to FASTQ preprocessor.")

            if args.PEAR:
                file_list = pear_consensus(args, log)
                if not file_list:
                    log.error("PEAR failed.  Check logs.")
                    raise SystemExit(1)
                fastq_consensus = file_list[0]

                fq1 = FASTQ_Tools.FASTQ_Reader(fastq_consensus, log)
                fq2 = None

            else:
                fq2 = FASTQ_Tools.FASTQ_Reader(args.FASTQ2, log)
                fq1 = FASTQ_Tools.FASTQ_Reader(args.FASTQ1, log)

            sample_manifest = Tool_Box.FileParser.indices(
                log, args.SampleManifest)
            indel_processing = \
                Indel_Processing.DataProcessing(log, args, run_start, __version__,
                                                Target_Mapper.TargetMapper(log, args, sample_manifest), fq1, fq2)

            indel_processing.main_loop()

            # Compress or delete PEAR files.
            if args.PEAR and file_list:
                if args.DeleteConsensusFASTQ:
                    log.info("Deleting PEAR FASTQ Files.")
                    Tool_Box.delete(file_list)
                else:
                    log.info(
                        "Compressing {} FASTQ Files Generated by PEAR.".format(
                            len(file_list)))
                    p = pathos.multiprocessing.Pool(int(args.Spawn))
                    p.starmap(Tool_Box.compress_files,
                              zip(file_list, itertools.repeat(log)))
        else:
            log.error(
                "Only 'Illumina', 'TruSeq' or 'Ramsden' --Platform methods currently allowed."
            )
            raise SystemExit(1)

    elif not args.IndelProcessing:
        # Run frequency file Combine module
        run_start = datetime.datetime.today().strftime("%a %b %d %H:%M:%S %Y")
        log.info("Process Replicates.")
        data_dict = collections.defaultdict(list)
        file_list = [
            f for f in glob.glob("{}*ScarMapper_Frequency.txt".format(
                args.DataFiles, ))
        ]
        file_count = len(file_list)
        page_header = "# ScarMapper File Merge v{}\n# Run: {}\n# Sample Name: {}\n" \
            .format(__version__, run_start, args.SampleName)

        line_num = 0
        index_file = list(csv.reader(open(file_list[0]), delimiter='\t'))
        for line in index_file:
            if not line:
                break
            elif line_num > 3:
                page_header += "{}\n".format(line[0])

            line_num += 1
        page_header += "\n\n"

        for file_name in file_list:
            freq_file_data = Tool_Box.FileParser.indices(log, file_name)

            for row in freq_file_data:
                key = "{}|{}|{}|{}".format(row[3], row[4], row[6], row[8])
                row_data = row[2:]

                if key in data_dict:
                    data_dict[key][0].append(float(row[1]))
                else:
                    data_dict[key] = [[float(row[1])], row_data]

        # Process Data and Write Combined Frequency results file

        plot_data_dict = collections.defaultdict(list)
        label_dict = collections.defaultdict(float)
        output_data_dict = collections.defaultdict(list)
        marker_list = []

        for key, row_list in data_dict.items():
            # Force pattern to be in at least half of the files.
            if len(row_list[0]) / file_count >= 0.5:
                row_string = "\t".join(row_list[1])
                freq = gmean(row_list[0])
                sem = stats.sem(row_list[0])
                freq_results_outstring = "{}\t{}\t{}\n".format(
                    freq, sem, row_string)
                output_key = freq

                # Freq is a 17 digit float so it is very unlikely to be duplicated but if it is this increments it by
                # a small number then checks the uniqueness again.
                if output_key in output_data_dict:
                    output_key = output_key + 1e-16
                    if output_key in output_data_dict:
                        output_key = output_key + 1e-16

                scar_type = row_list[1][0]
                label_dict[scar_type] += freq

                # Gather up our data for plotting
                lft_del = int(row_list[1][1])
                rt_del = int(row_list[1][2])
                mh_size = int(row_list[1][5])
                ins_size = int(row_list[1][7])

                output_data_dict[output_key] = \
                    [(freq, lft_del, rt_del, mh_size, ins_size, scar_type), freq_results_outstring]

        freq_results_outstring = \
            "{}# Frequency\tSEM\tScar Type\tLeft Deletions\tRight Deletions\tDeletion Size\tMicrohomology\t" \
            "Microhomology Size\tInsertion\tInsertion Size\tLeft Template\tRight Template\tConsensus Left Junction\t" \
            "Consensus Right Junction\tTarget Left Junction\tTarget Right Junction\tConsensus\tTarget Region\n" \
            .format(page_header)

        # Now draw a pretty graph of the data if we are not dealing with a negative control.
        for k in natsort.natsorted(output_data_dict, reverse=True):
            data_list = output_data_dict[k]
            freq_results_outstring += data_list[1]

            freq = data_list[0][0]
            lft_del = data_list[0][1]
            rt_del = data_list[0][2]
            mh_size = data_list[0][3]
            ins_size = data_list[0][4]
            scar_type = data_list[0][5]

            # Plotting all scar patterns is messy.  This provides a cutoff.
            if freq < 0.00025:
                continue

            y_value = freq * 0.5
            lft_ins_width = freq
            rt_ins_width = freq

            # This is gathered up to find the largest value.  Used to set the x-axis limits.
            marker_list.extend([
                lft_del + (mh_size * 0.5), rt_del + (mh_size * 0.5), ins_size
            ])

            # Deletion size included half the size of any microhomology present.
            lft_del_plot_value = (lft_del + (mh_size * 0.5)) * -1
            rt_del_plot_value = rt_del + (mh_size * 0.5)

            # Insertions are centered on 0 so we need to take half the value for each side.
            lft_ins_plot_value = (ins_size * 0.5) * -1
            rt_ins_plot_value = ins_size * 0.5

            # Scale the width of bars for insertions inside of deletions
            if lft_del + (mh_size * 0.5) != 0:
                lft_ins_width = freq * 0.5
            if rt_del + (mh_size * 0.5) != 0:
                rt_ins_width = freq * 0.5

            if scar_type not in plot_data_dict:
                plot_data_dict[scar_type] = \
                    [[freq], [lft_del_plot_value], [rt_del_plot_value], [lft_ins_plot_value],
                     [rt_ins_plot_value], [lft_ins_width], [rt_ins_width], [y_value]]
            else:
                # Get some previous plot data
                count = len(plot_data_dict[scar_type][0])
                previous_freq = plot_data_dict[scar_type][0][count - 1]
                previous_y = plot_data_dict[scar_type][7][count - 1]

                plot_data_dict[scar_type][0].append(freq)
                plot_data_dict[scar_type][1].append(lft_del_plot_value)
                plot_data_dict[scar_type][2].append(rt_del_plot_value)
                plot_data_dict[scar_type][3].append(lft_ins_plot_value)
                plot_data_dict[scar_type][4].append(rt_ins_plot_value)
                plot_data_dict[scar_type][5].append(lft_ins_width)
                plot_data_dict[scar_type][6].append(rt_ins_width)

                # Use the previous plot data to find the y-value of the current bar.
                plot_data_dict[scar_type][7] \
                    .append(previous_y + 0.002 + (0.5 * previous_freq) + y_value)

        plot_data_dict['Marker'] = [(max(marker_list)) * -1, max(marker_list)]
        # sample_name = "{}.{}".format(args.Job_Name, args.SampleName)

        ScarMapperPlot.scarmapperplot(args,
                                      datafile=None,
                                      sample_name=args.SampleName,
                                      plot_data_dict=plot_data_dict,
                                      label_dict=label_dict)

        freq_results_file = \
            open("{}{}_ScarMapper_Combined_Frequency.txt".format(args.WorkingFolder, args.SampleName), "w")

        freq_results_file.write(freq_results_outstring)
        freq_results_file.close()

    warning = "\033[1;31m **See warnings above**\033[m" if log.warning_occurred else ''
    elapsed_time = int(time.time() - start_time)
    log.info(
        "****ScarMapper {0} complete ({1} seconds, {2} Mb peak memory).****".
        format(module_name, elapsed_time, Tool_Box.peak_memory(), warning))

    # All done so we need to quit otherwise Python will not release the log file on virtual Linux.
    exit(0)