示例#1
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        sample_info = self.preprocess_sample_info(sample_info)
        current_sample = Sample()

        if self._dataset_type != "test":
            text_processor_argument = {"tokens": sample_info["caption_tokens"]}
            processed_caption = self.text_processor(text_processor_argument)
            current_sample.text = processed_caption["text"]
            current_sample.caption_id = torch.tensor(sample_info["caption_id"],
                                                     dtype=torch.int)
            current_sample.caption_len = torch.tensor(len(
                sample_info["caption_tokens"]),
                                                      dtype=torch.int)

        current_sample.image_id = object_to_byte_tensor(
            sample_info["image_id"])

        if self._use_features:
            features = self.features_db[idx]
            current_sample.update(features)
        else:
            image_path = str(sample_info["image_name"]) + ".jpg"
            current_sample.image = self.image_db.from_path(
                image_path)["images"][0]

        # Add reference captions to sample
        current_sample = self.add_reference_caption(sample_info,
                                                    current_sample)

        return current_sample
示例#2
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        processed_caption = self.text_processor(
            {"text": sample_info["captions"][0]})
        current_sample.text = processed_caption["text"]
        current_sample.caption_len = torch.tensor(len(
            processed_caption["text"]),
                                                  dtype=torch.int)

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = torch.tensor(sample_info["image_id"],
                                                   dtype=torch.int)
        else:
            current_sample.image_id = sample_info["image_id"]

        if self._use_features is True:
            features = self.features_db[idx]
            current_sample.update(features)

        current_sample.answers = torch.stack([processed_caption["text"]])

        return current_sample