示例#1
0
def plot_potential(grid, potential, view=None, size=(12,9), fill=False):
    # The Grid
    u = grid.get_nodes(split=True, flat=False)
    u = real(u[0])

    # Create potential and evaluate eigenvalues
    potew = potential.evaluate_eigenvalues_at(grid)
    potew = [ level.reshape(grid.get_number_nodes(overall=False)) for level in potew ]

    # Plot the energy surfaces of the potential
    fig = figure(figsize=size)
    ax = fig.gca()

    for index, ew in enumerate(potew):
        if fill:
            ax.fill(u, ew, facecolor="blue", alpha=0.25)
        ax.plot(u, ew, label=r"$\lambda_"+str(index)+r"$")

    ax.ticklabel_format(style="sci", scilimits=(0,0), axis="y")
    ax.grid(True)
    # Set the aspect window
    if view is not None:
        ax.set_xlim(view[:2])
        ax.set_ylim(view[2:])
    ax.set_xlabel(r"$x$")
    ax.set_ylabel(r"$\lambda_i\left(x\right)$")
    legend(loc="outer right")
    ax.set_title(r"The eigenvalues $\lambda_i$ of the potential $V\left(x\right)$")
    fig.savefig("potential"+GD.output_format)
    close(fig)
示例#2
0
def plot_potential(grid, potential, view=None, size=(12, 9), path="."):
    # The Grid
    u = grid.get_nodes(split=True)
    u = real(u[0])

    # Create potential and evaluate eigenvalues
    potew = potential.evaluate_eigenvalues_at(grid)
    potew = [real(level).reshape(-1) for level in potew]

    # View
    if view[0] is None:
        view[0] = u.min()
    if view[1] is None:
        view[1] = u.max()

    # Plot the energy surfaces of the potential
    fig = figure(figsize=size)
    ax = fig.gca()

    for index, ew in enumerate(potew):
        ax.plot(u, ew, label=r"$\lambda_{%d}$" % index)

    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.set_ylim(view[2:])
    ax.set_xlabel(r"$x$")
    ax.set_ylabel(r"$\lambda_i\left(x\right)$")
    legend(loc="outer right")
    ax.set_title(r"The eigenvalues $\lambda_i$ of the potential $V\left(x\right)$")
    fig.savefig(os.path.join(path, "potential" + GD.output_format))
    close(fig)
def plot_autocorrelations(data, index=0):
    print("Plotting the autocorrelations of data block '"+str(index)+"'")

    timegrid, autocorrelations = data

    # Plot the autocorrelations
    fig = figure()
    ax = fig.gca()

    # Plot the autocorrelations of the individual wavepackets
    for i, datum in enumerate(autocorrelations[:-1]):
        label_i = r"$|\langle \Phi_"+str(i)+r"(0) | \Phi_"+str(i)+r"(t) \rangle|$"
        #ax.plot(timegrid, real(datum), label=label_i)
        #ax.plot(timegrid, imag(datum), label=label_i)
        ax.plot(timegrid, abs(datum), label=label_i)

    # Plot the sum of all autocorrelations
    ax.plot(timegrid, abs(autocorrelations[-1]), color=(1,0,0), label=r"$\sum_i {|\langle \Phi_i(0) | \Phi_i(t) \rangle|}$")

    ax.set_xlim(min(timegrid), max(timegrid))
    ax.grid(True)
    ax.ticklabel_format(style="sci", scilimits=(0,0), axis="y")
    ax.set_title(r"Autocorrelations of $\Psi$")
    legend(loc="upper right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylim(0, 1.1)
    fig.savefig("autocorrelations_block"+str(index)+GD.output_format)
    close(fig)


    # Plot the autocorrelations
    N = len(autocorrelations) -1
    fig = figure()

    # Plot the autocorrelations of the individual wavepackets
    for i, datum in enumerate(autocorrelations[:-1]):
        ax = fig.add_subplot(N, 1, i+1)
        label_ir = r"$\Re \langle \Phi_"+str(i)+r"(0) | \Phi_"+str(i)+r"(t) \rangle$"
        label_ii = r"$\Im \langle \Phi_"+str(i)+r"(0) | \Phi_"+str(i)+r"(t) \rangle$"
        label_im = r"$|\langle \Phi_"+str(i)+r"(0) | \Phi_"+str(i)+r"(t) \rangle|$"
        ax.plot(timegrid, real(datum), label=label_ir)
        ax.plot(timegrid, imag(datum), label=label_ii)
        ax.plot(timegrid, abs(datum), label=label_im)

        ax.set_xlim(min(timegrid), max(timegrid))
        ax.grid(True)
        ax.ticklabel_format(style="sci", scilimits=(0,0), axis="y")
        ax.set_xlabel(r"Time $t$")

        legend(loc="upper right")
    ax.set_ylim(0, 1.1)
    ax.set_title(r"Autocorrelations of $\Psi$")
    fig.savefig("autocorrelations_per_component_block"+str(index)+GD.output_format)
    close(fig)
def plot_energies(data, index=0):
    print("Plotting the energies of data block '"+str(index)+"'")

    timegridk, timegridp, ekin, epot = data

    # Plot the energies
    fig = figure()
    ax = fig.gca()

    # Plot the kinetic energy of the individual wave packets
    for i, kin in enumerate(ekin[:-1]):
        ax.plot(timegridk, kin, label=r"$E^{kin}_"+str(i)+r"$")

    # Plot the potential energy of the individual wave packets
    for i, pot in enumerate(epot[:-1]):
        ax.plot(timegridp, pot, label=r"$E^{pot}_"+str(i)+r"$")

    # Plot the sum of kinetic and potential energy for all wave packets
    for i, (kin, pot) in enumerate(zip(ekin, epot)[:-1]):
        ax.plot(timegridk, kin + pot, label=r"$E^{kin}_"+str(i)+r"+E^{pot}_"+str(i)+r"$")

    # Plot sum of kinetic and sum of potential energy
    ax.plot(timegridk, ekin[-1], label=r"$\sum_i E^{kin}_i$")
    ax.plot(timegridp, epot[-1], label=r"$\sum_i E^{pot}_i$")

    # Plot the overall energy of all wave packets
    ax.plot(timegridk, ekin[-1] + epot[-1], label=r"$\sum_i E^{kin}_i + \sum_i E^{pot}_i$")

    ax.ticklabel_format(style="sci", scilimits=(0,0), axis="y")
    ax.grid(True)
    ax.set_xlabel(r"Time $t$")
    legend(loc="outer right")
    ax.set_title(r"Energies of the wavepacket $\Psi$")

    fig.savefig("energies_block"+str(index)+GD.output_format)
    close(fig)


    # Plot the energy drift
    e_orig = (ekin[-1]+epot[-1])[0]
    data = abs(e_orig-(ekin[-1]+epot[-1]))

    fig = figure()
    ax = fig.gca()

    ax.plot(timegridk, data, label=r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")

    ax.ticklabel_format(style="sci", scilimits=(0,0), axis="y")
    ax.grid(True)
    ax.set_xlabel(r"Time $t$")
    ax.set_ylabel(r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.set_title(r"Energy drift of the wavepacket $\Psi$")

    fig.savefig("energy_drift_block"+str(index)+"_lin"+GD.output_format)
    close(fig)


    fig = figure()
    ax = fig.gca()

    ax.semilogy(timegridk, data, label=r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.grid(True)
    ax.set_xlabel(r"Time $t$")
    ax.set_ylabel(r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.set_title(r"Energy drift of the wavepacket $\Psi$")

    fig.savefig("energy_drift_block"+str(index)+"_log"+GD.output_format)
    close(fig)
示例#5
0
def plot_autocorrelations(data, blockid=0, view=None, path='.'):
    print("Plotting the autocorrelations of data block '%s'" % blockid)

    timegrid, autocorrelations, dt = data

    if dt is None:
        xlbl = r"Timesteps $n$"
        dt = 1.0
    else:
        xlbl = r"Time $t$"

    # Filter
    time = timegrid * dt
    time = where(timegrid < 0, nan, time)

    # View
    if view[0] is None:
        view[0] = nanmin(time)
    if view[1] is None:
        view[1] = nanmax(time)
    if view[2] is None:
        view[2] = 0.0
    if view[3] is None:
        view[3] = 1.1

    # Plot the autocorrelations
    fig = figure()
    ax = fig.gca()

    # Plot the autocorrelations of the individual wavepackets
    for i, datum in enumerate(autocorrelations[:-1]):
        ax.plot(time,
                abs(datum),
                label=r"$|\langle \Phi_{%d}(0) | \Phi_{%d}(t) \rangle|$" %
                (i, i))

    # Plot the sum of all autocorrelations
    ax.plot(time,
            abs(autocorrelations[-1]),
            color=(1, 0, 0),
            label=r"$\sum_i {|\langle \Phi_i(0) | \Phi_i(t) \rangle|}$")

    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.set_ylim(view[2:])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Autocorrelations of $\Psi$")
    legend(loc="upper right")
    ax.set_xlabel(xlbl)
    fig.savefig(
        os.path.join(
            path, "autocorrelations_block" + str(blockid) + GD.output_format))
    close(fig)

    # Plot the autocorrelations
    N = len(autocorrelations) - 1
    fig = figure()

    # Plot the autocorrelations of the individual wavepackets
    for i, datum in enumerate(autocorrelations[:-1]):
        ax = fig.add_subplot(N, 1, i + 1)
        ax.plot(time,
                real(datum),
                label=r"$\Re \langle \Phi_{%d}(0) | \Phi_{%d}(t) \rangle$" %
                (i, i))
        ax.plot(time,
                imag(datum),
                label=r"$\Im \langle \Phi_{%d}(0) | \Phi_{%d}(t) \rangle$" %
                (i, i))
        ax.plot(time,
                abs(datum),
                label=r"$|\langle \Phi_{%d}(0) | \Phi_{%d}(t) \rangle|$" %
                (i, i))

        ax.grid(True)
        ax.set_xlim(view[:2])
        ax.set_ylim(view[2:])
        ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
        ax.set_xlabel(xlbl)
        legend(loc="upper right")

    ax.set_title(r"Autocorrelations of $\Psi$")
    fig.savefig(
        os.path.join(
            path, "autocorrelations_per_component_block" + str(blockid) +
            GD.output_format))
    close(fig)
示例#6
0
def plot_energies(data, blockid=0, view=None, path='.'):
    print("Plotting the energies of data block '{}'".format(blockid))

    timegridk, timegridp, ekin, epot, dt = data

    if dt is None:
        xlbl = r"Timesteps $n$"
        dt = 1.0
    else:
        xlbl = r"Time $t$"

    # Filter
    timek = timegridk * dt
    timep = timegridp * dt
    timek = where(timegridk < 0, nan, timek)
    timep = where(timegridp < 0, nan, timep)

    # View
    if view[0] is None:
        view[0] = min(nanmin(timek), nanmin(timep))
    if view[1] is None:
        view[1] = max(nanmax(timek), nanmax(timep))

    # Plot the energies
    fig = figure()
    ax = fig.gca()

    # Plot the kinetic energy of the individual wave packets
    for i, kin in enumerate(ekin[:-1]):
        ax.plot(timek, kin, label=r"$E^{kin}_{%d}$" % i)

    # Plot the potential energy of the individual wave packets
    for i, pot in enumerate(epot[:-1]):
        ax.plot(timep, pot, label=r"$E^{pot}_{%d}$" % i)

    # Plot the sum of kinetic and potential energy for all wave packets
    for i, (kin, pot) in enumerate(list(zip(ekin, epot))[:-1]):
        ax.plot(timek,
                kin + pot,
                label=r"$E^{kin}_{%d}+E^{pot}_{%d}$" % (i, i))

    # Plot sum of kinetic and sum of potential energy
    ax.plot(timek, ekin[-1], label=r"$\sum_i E^{kin}_i$")
    ax.plot(timep, epot[-1], label=r"$\sum_i E^{pot}_i$")

    # Plot the overall energy of all wave packets
    ax.plot(timek,
            ekin[-1] + epot[-1],
            label=r"$\sum_i E^{kin}_i + \sum_i E^{pot}_i$")

    ax.set_xlim(view[:2])
    if None not in view[2:]:
        ax.set_ylim(view[2:])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.grid(True)
    ax.set_xlabel(xlbl)
    legend(loc="outer right")
    ax.set_title(r"Energies of the wavepacket $\Psi$")
    fig.savefig(
        os.path.join(path, "energies_block" + str(blockid) + GD.output_format))
    close(fig)

    # Plot the energy drift
    e_orig = (ekin[-1] + epot[-1])[0]
    data = abs(e_orig - (ekin[-1] + epot[-1]))

    fig = figure()
    ax = fig.gca()

    ax.plot(timek, data, label=r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")

    ax.set_xlim(view[:2])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.grid(True)
    ax.set_xlabel(xlbl)
    ax.set_ylabel(r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.set_title(r"Energy drift of the wavepacket $\Psi$")
    fig.savefig(
        os.path.join(
            path,
            "energy_drift_block" + str(blockid) + "_lin" + GD.output_format))
    close(fig)

    fig = figure()
    ax = fig.gca()

    ax.semilogy(timek,
                data,
                label=r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")

    ax.set_xlim(view[:2])
    ax.grid(True)
    ax.set_xlabel(xlbl)
    ax.set_ylabel(r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.set_title(r"Energy drift of the wavepacket $\Psi$")
    fig.savefig(
        os.path.join(
            path,
            "energy_drift_block" + str(blockid) + "_log" + GD.output_format))
    close(fig)
示例#7
0
def plot_norms(data, blockid=0, view=None, path='.'):
    print("Plotting the norms of data block '{}'".format(blockid))

    timegrid, norms, dt = data
    # Filter
    time = timegrid * dt
    time = where(timegrid < 0, nan, time)

    if dt is None:
        xlbl = r"Timesteps $n$"
        dt = 1.0
    else:
        xlbl = r"Time $t$"

    # View
    if view[0] is None:
        view[0] = nanmin(time)
    if view[1] is None:
        view[1] = nanmax(time)
    if view[2] is None:
        view[2] = 0.0
    if view[3] is None:
        view[3] = 1.1 * max(norms[-1])

    # Plot the norms
    fig = figure()
    ax = fig.gca()

    # Plot the norms of the individual wavepackets
    for i, norm in enumerate(norms[:-1]):
        label_i = r"$\| \Phi_{%d} \|$" % i
        ax.plot(time, norm, label=label_i)

    # Plot the sum of all norms
    ax.plot(time, norms[-1], color=(1, 0, 0), label=r"${\sqrt{\sum_i {\| \Phi_i \|^2}}}$")

    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.set_ylim(view[2], view[3])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Norms of $\Psi$")
    legend(loc="outer right")
    ax.set_xlabel(xlbl)
    fig.savefig(os.path.join(path, "norms_block"+str(blockid)+GD.output_format))
    close(fig)


    fig = figure()
    ax = fig.gca()

    # Plot the squared norms of the individual wavepackets
    for i, norm in enumerate(norms[:-1]):
        label_i = r"$\| \Phi_{%d} \|^2$" % i
        ax.plot(time, norm**2, label=label_i)

    # Plot the squared sum of all norms
    ax.plot(time, norms[-1]**2, color=(1, 0, 0), label=r"${\sum_i {\| \Phi_i \|^2}}$")

    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.set_ylim(view[2], view[3]**2)
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Squared norms of $\Psi$")
    legend(loc="outer right")
    ax.set_xlabel(xlbl)
    fig.savefig(os.path.join(path, "norms_sqr_block"+str(blockid)+GD.output_format))
    close(fig)


    # Plot the difference from the theoretical norm
    fig = figure()
    ax = fig.gca()

    ax.plot(time, abs(norms[-1][0] - norms[-1]), label=r"$\|\Psi\|_0 - \|\Psi\|_t$")

    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Drift of $\| \Psi \|$")
    legend(loc="outer right")
    ax.set_xlabel(xlbl)
    ax.set_ylabel(r"$\|\Psi\|_0 - \|\Psi\|_t$")
    fig.savefig(os.path.join(path, "norms_drift_block"+str(blockid)+GD.output_format))
    close(fig)


    fig = figure()
    ax = fig.gca()

    ax.semilogy(time, abs(norms[-1][0] - norms[-1]), label=r"$\|\Psi\|_0 - \|\Psi\|_t$")

    ax.set_xlim(view[:2])
    ax.grid(True)
    ax.set_title(r"Drift of $\| \Psi \|$")
    legend(loc="outer right")
    ax.set_xlabel(xlbl)
    ax.set_ylabel(r"$\|\Psi\|_0 - \|\Psi\|_t$")
    fig.savefig(os.path.join(path, "norms_drift_block"+str(blockid)+"_log"+GD.output_format))
    close(fig)
示例#8
0
def plot_norms(data, index=0):
    print("Plotting the norms of data block '"+str(index)+"'")

    timegrid, norms = data

    # Plot the norms
    fig = figure()
    ax = fig.gca()

    # Plot the norms of the individual wavepackets
    for i, datum in enumerate(norms[:-1]):
        label_i = r"$\| \Phi_"+str(i)+r" \|$"
        ax.plot(timegrid, datum, label=label_i)

    # Plot the sum of all norms
    ax.plot(timegrid, norms[-1], color=(1,0,0), label=r"${\sqrt{\sum_i {\| \Phi_i \|^2}}}$")

    ax.grid(True)
    ax.ticklabel_format(style="sci", scilimits=(0,0), axis="y")
    ax.set_title(r"Norms of $\Psi$")
    legend(loc="outer right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylim([0,1.1*max(norms[:-1])])
    fig.savefig("norms_block"+str(index)+GD.output_format)
    close(fig)


    fig = figure()
    ax = fig.gca()

    # Plot the squared norms of the individual wavepackets
    for i, datum in enumerate(norms[:-1]):
        label_i = r"$\| \Phi_"+str(i)+r" \|^2$"
        ax.plot(timegrid, datum**2, label=label_i)

    # Plot the squared sum of all norms
    ax.plot(timegrid, norms[-1]**2, color=(1,0,0), label=r"${\sum_i {\| \Phi_i \|^2}}$")

    ax.grid(True)
    ax.ticklabel_format(style="sci", scilimits=(0,0), axis="y")
    ax.set_title(r"Squared norms of $\Psi$")
    legend(loc="outer right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylim([0,1.1*max(norms[-1]**2)])
    fig.savefig("norms_sqr_block"+str(index)+GD.output_format)
    close(fig)


    # Plot the difference from the theoretical norm
    fig = figure()
    ax = fig.gca()

    ax.plot(timegrid, abs(norms[-1][0] - norms[-1]), label=r"$\|\Psi\|_0 - \|\Psi\|_t$")

    ax.grid(True)
    ax.ticklabel_format(style="sci", scilimits=(0,0), axis="y")
    ax.set_title(r"Drift of $\| \Psi \|$")
    legend(loc="outer right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylabel(r"$\|\Psi\|_0 - \|\Psi\|_t$")
    fig.savefig("norms_drift_block"+str(index)+GD.output_format)
    close(fig)


    fig = figure()
    ax = fig.gca()

    ax.semilogy(timegrid, abs(norms[-1][0] - norms[-1]), label=r"$\|\Psi\|_0 - \|\Psi\|_t$")

    ax.grid(True)
    ax.set_title(r"Drift of $\| \Psi \|$")
    legend(loc="outer right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylabel(r"$\|\Psi\|_0 - \|\Psi\|_t$")
    fig.savefig("norms_drift_block"+str(index)+"_log"+GD.output_format)
    close(fig)
示例#9
0
def plot_norms(data, blockid=0, view=None, path='.'):
    print("Plotting the norms of data block '{}'".format(blockid))

    timegrid, norms, dt = data

    if dt is None:
        xlbl = r"Timesteps $n$"
        dt = 1.0
    else:
        xlbl = r"Time $t$"

    # Filter
    time = timegrid * dt
    time = where(timegrid < 0, nan, time)

    # View
    if view[0] is None:
        view[0] = nanmin(time)
    if view[1] is None:
        view[1] = nanmax(time)
    if view[2] is None:
        view[2] = 0.0
    if view[3] is None:
        view[3] = 1.1 * max(norms[-1])

    # Plot the norms
    fig = figure()
    ax = fig.gca()

    # Plot the norms of the individual wavepackets
    for i, norm in enumerate(norms[:-1]):
        label_i = r"$\| \Phi_{%d} \|$" % i
        ax.plot(time, norm, label=label_i)

    # Plot the sum of all norms
    ax.plot(time,
            norms[-1],
            color=(1, 0, 0),
            label=r"${\sqrt{\sum_i {\| \Phi_i \|^2}}}$")

    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.set_ylim(view[2], view[3])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Norms of $\Psi$")
    legend(loc="outer right")
    ax.set_xlabel(xlbl)
    fig.savefig(
        os.path.join(path, "norms_block" + str(blockid) + GD.output_format))
    close(fig)

    fig = figure()
    ax = fig.gca()

    # Plot the squared norms of the individual wavepackets
    for i, norm in enumerate(norms[:-1]):
        label_i = r"$\| \Phi_{%d} \|^2$" % i
        ax.plot(time, norm**2, label=label_i)

    # Plot the squared sum of all norms
    ax.plot(time,
            norms[-1]**2,
            color=(1, 0, 0),
            label=r"${\sum_i {\| \Phi_i \|^2}}$")

    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.set_ylim(view[2], view[3]**2)
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Squared norms of $\Psi$")
    legend(loc="outer right")
    ax.set_xlabel(xlbl)
    fig.savefig(
        os.path.join(path,
                     "norms_sqr_block" + str(blockid) + GD.output_format))
    close(fig)

    # Plot the difference from the theoretical norm
    fig = figure()
    ax = fig.gca()

    ax.plot(time,
            abs(norms[-1][0] - norms[-1]),
            label=r"$\|\Psi\|_0 - \|\Psi\|_t$")

    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Drift of $\| \Psi \|$")
    legend(loc="outer right")
    ax.set_xlabel(xlbl)
    ax.set_ylabel(r"$\|\Psi\|_0 - \|\Psi\|_t$")
    fig.savefig(
        os.path.join(path,
                     "norms_drift_block" + str(blockid) + GD.output_format))
    close(fig)

    fig = figure()
    ax = fig.gca()

    ax.semilogy(time,
                abs(norms[-1][0] - norms[-1]),
                label=r"$\|\Psi\|_0 - \|\Psi\|_t$")

    ax.set_xlim(view[:2])
    ax.grid(True)
    ax.set_title(r"Drift of $\| \Psi \|$")
    legend(loc="outer right")
    ax.set_xlabel(xlbl)
    ax.set_ylabel(r"$\|\Psi\|_0 - \|\Psi\|_t$")
    fig.savefig(
        os.path.join(
            path,
            "norms_drift_block" + str(blockid) + "_log" + GD.output_format))
    close(fig)
示例#10
0
def plot_norms(data, index=0):
    print("Plotting the norms of data block '" + str(index) + "'")

    timegrid, norms = data

    # Plot the norms
    fig = figure()
    ax = fig.gca()

    # Plot the norms of the individual wavepackets
    for i, datum in enumerate(norms[:-1]):
        label_i = r"$\| \Phi_" + str(i) + r" \|$"
        ax.plot(timegrid, datum, label=label_i)

    # Plot the sum of all norms
    ax.plot(timegrid,
            norms[-1],
            color=(1, 0, 0),
            label=r"${\sqrt{\sum_i {\| \Phi_i \|^2}}}$")

    ax.grid(True)
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Norms of $\Psi$")
    legend(loc="outer right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylim([0, 1.1 * max(norms[:-1])])
    fig.savefig("norms_block" + str(index) + GD.output_format)
    close(fig)

    fig = figure()
    ax = fig.gca()

    # Plot the squared norms of the individual wavepackets
    for i, datum in enumerate(norms[:-1]):
        label_i = r"$\| \Phi_" + str(i) + r" \|^2$"
        ax.plot(timegrid, datum**2, label=label_i)

    # Plot the squared sum of all norms
    ax.plot(timegrid,
            norms[-1]**2,
            color=(1, 0, 0),
            label=r"${\sum_i {\| \Phi_i \|^2}}$")

    ax.grid(True)
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Squared norms of $\Psi$")
    legend(loc="outer right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylim([0, 1.1 * max(norms[-1]**2)])
    fig.savefig("norms_sqr_block" + str(index) + GD.output_format)
    close(fig)

    # Plot the difference from the theoretical norm
    fig = figure()
    ax = fig.gca()

    ax.plot(timegrid,
            abs(norms[-1][0] - norms[-1]),
            label=r"$\|\Psi\|_0 - \|\Psi\|_t$")

    ax.grid(True)
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Drift of $\| \Psi \|$")
    legend(loc="outer right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylabel(r"$\|\Psi\|_0 - \|\Psi\|_t$")
    fig.savefig("norms_drift_block" + str(index) + GD.output_format)
    close(fig)

    fig = figure()
    ax = fig.gca()

    ax.semilogy(timegrid,
                abs(norms[-1][0] - norms[-1]),
                label=r"$\|\Psi\|_0 - \|\Psi\|_t$")

    ax.grid(True)
    ax.set_title(r"Drift of $\| \Psi \|$")
    legend(loc="outer right")
    ax.set_xlabel(r"Time $t$")
    ax.set_ylabel(r"$\|\Psi\|_0 - \|\Psi\|_t$")
    fig.savefig("norms_drift_block" + str(index) + "_log" + GD.output_format)
    close(fig)
示例#11
0
def plot_energies(data, index=0):
    print("Plotting the energies of data block '" + str(index) + "'")

    timegridk, timegridp, ekin, epot = data

    # Plot the energies
    fig = figure()
    ax = fig.gca()

    # Plot the kinetic energy of the individual wave packets
    for i, kin in enumerate(ekin[:-1]):
        ax.plot(timegridk, kin, label=r"$E^{kin}_" + str(i) + r"$")

    # Plot the potential energy of the individual wave packets
    for i, pot in enumerate(epot[:-1]):
        ax.plot(timegridp, pot, label=r"$E^{pot}_" + str(i) + r"$")

    # Plot the sum of kinetic and potential energy for all wave packets
    for i, (kin, pot) in enumerate(zip(ekin, epot)[:-1]):
        ax.plot(timegridk,
                kin + pot,
                label=r"$E^{kin}_" + str(i) + r"+E^{pot}_" + str(i) + r"$")

    # Plot sum of kinetic and sum of potential energy
    ax.plot(timegridk, ekin[-1], label=r"$\sum_i E^{kin}_i$")
    ax.plot(timegridp, epot[-1], label=r"$\sum_i E^{pot}_i$")

    # Plot the overall energy of all wave packets
    ax.plot(timegridk,
            ekin[-1] + epot[-1],
            label=r"$\sum_i E^{kin}_i + \sum_i E^{pot}_i$")

    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.grid(True)
    ax.set_xlabel(r"Time $t$")
    legend(loc="outer right")
    ax.set_title(r"Energies of the wavepacket $\Psi$")

    fig.savefig("energies_block" + str(index) + GD.output_format)
    close(fig)

    # Plot the energy drift
    e_orig = (ekin[-1] + epot[-1])[0]
    data = abs(e_orig - (ekin[-1] + epot[-1]))

    fig = figure()
    ax = fig.gca()

    ax.plot(timegridk,
            data,
            label=r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")

    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.grid(True)
    ax.set_xlabel(r"Time $t$")
    ax.set_ylabel(r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.set_title(r"Energy drift of the wavepacket $\Psi$")

    fig.savefig("energy_drift_block" + str(index) + "_lin" + GD.output_format)
    close(fig)

    fig = figure()
    ax = fig.gca()

    ax.semilogy(timegridk,
                data,
                label=r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.grid(True)
    ax.set_xlabel(r"Time $t$")
    ax.set_ylabel(r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.set_title(r"Energy drift of the wavepacket $\Psi$")

    fig.savefig("energy_drift_block" + str(index) + "_log" + GD.output_format)
    close(fig)
示例#12
0
def plot_autocorrelations(data, blockid=0, view=None, path='.'):
    print("Plotting the autocorrelations of data block '%s'" % blockid)

    timegrid, autocorrelations, dt = data

    if dt is None:
        xlbl = r"Timesteps $n$"
        dt = 1.0
    else:
        xlbl = r"Time $t$"

    # Filter
    time = timegrid * dt
    time = where(timegrid < 0, nan, time)

    # View
    if view[0] is None:
        view[0] = nanmin(time)
    if view[1] is None:
        view[1] = nanmax(time)
    if view[2] is None:
        view[2] = 0.0
    if view[3] is None:
        view[3] = 1.1

    # Plot the autocorrelations
    fig = figure()
    ax = fig.gca()

    # Plot the autocorrelations of the individual wavepackets
    for i, datum in enumerate(autocorrelations[:-1]):
        ax.plot(time, abs(datum), label=r"$|\langle \Phi_{%d}(0) | \Phi_{%d}(t) \rangle|$" % (i, i))

    # Plot the sum of all autocorrelations
    ax.plot(time, abs(autocorrelations[-1]), color=(1, 0, 0), label=r"$\sum_i {|\langle \Phi_i(0) | \Phi_i(t) \rangle|}$")

    ax.grid(True)
    ax.set_xlim(view[:2])
    ax.set_ylim(view[2:])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.set_title(r"Autocorrelations of $\Psi$")
    legend(loc="upper right")
    ax.set_xlabel(xlbl)
    fig.savefig(os.path.join(path, "autocorrelations_block" + str(blockid) + GD.output_format))
    close(fig)


    # Plot the autocorrelations
    N = len(autocorrelations) - 1
    fig = figure()

    # Plot the autocorrelations of the individual wavepackets
    for i, datum in enumerate(autocorrelations[:-1]):
        ax = fig.add_subplot(N, 1, i + 1)
        ax.plot(time, real(datum), label=r"$\Re \langle \Phi_{%d}(0) | \Phi_{%d}(t) \rangle$" % (i, i))
        ax.plot(time, imag(datum), label=r"$\Im \langle \Phi_{%d}(0) | \Phi_{%d}(t) \rangle$" % (i, i))
        ax.plot(time, abs(datum), label=r"$|\langle \Phi_{%d}(0) | \Phi_{%d}(t) \rangle|$" % (i, i))

        ax.grid(True)
        ax.set_xlim(view[:2])
        ax.set_ylim(view[2:])
        ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
        ax.set_xlabel(xlbl)
        legend(loc="upper right")

    ax.set_title(r"Autocorrelations of $\Psi$")
    fig.savefig(os.path.join(path, "autocorrelations_per_component_block" + str(blockid) + GD.output_format))
    close(fig)
示例#13
0
def plot_energies(data, blockid=0, view=None, path='.'):
    print("Plotting the energies of data block '{}'".format(blockid))

    timegridk, timegridp, ekin, epot, dt = data

    if dt is None:
        xlbl = r"Timesteps $n$"
        dt = 1.0
    else:
        xlbl = r"Time $t$"

    # Filter
    timek = timegridk * dt
    timep = timegridp * dt
    timek = where(timegridk < 0, nan, timek)
    timep = where(timegridp < 0, nan, timep)

    # View
    if view[0] is None:
        view[0] = min(nanmin(timek), nanmin(timep))
    if view[1] is None:
        view[1] = max(nanmax(timek), nanmax(timep))

    # Plot the energies
    fig = figure()
    ax = fig.gca()

    # Plot the kinetic energy of the individual wave packets
    for i, kin in enumerate(ekin[:-1]):
        ax.plot(timek, kin, label=r"$E^{kin}_{%d}$" % i)

    # Plot the potential energy of the individual wave packets
    for i, pot in enumerate(epot[:-1]):
        ax.plot(timep, pot, label=r"$E^{pot}_{%d}$" % i)

    # Plot the sum of kinetic and potential energy for all wave packets
    for i, (kin, pot) in enumerate(list(zip(ekin, epot))[:-1]):
        ax.plot(timek, kin + pot, label=r"$E^{kin}_{%d}+E^{pot}_{%d}$" % (i, i))

    # Plot sum of kinetic and sum of potential energy
    ax.plot(timek, ekin[-1], label=r"$\sum_i E^{kin}_i$")
    ax.plot(timep, epot[-1], label=r"$\sum_i E^{pot}_i$")

    # Plot the overall energy of all wave packets
    ax.plot(timek, ekin[-1] + epot[-1], label=r"$\sum_i E^{kin}_i + \sum_i E^{pot}_i$")

    ax.set_xlim(view[:2])
    if None not in view[2:]:
        ax.set_ylim(view[2:])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.grid(True)
    ax.set_xlabel(xlbl)
    legend(loc="outer right")
    ax.set_title(r"Energies of the wavepacket $\Psi$")
    fig.savefig(os.path.join(path, "energies_block" + str(blockid) + GD.output_format))
    close(fig)


    # Plot the energy drift
    e_orig = (ekin[-1] + epot[-1])[0]
    data = abs(e_orig - (ekin[-1] + epot[-1]))

    fig = figure()
    ax = fig.gca()

    ax.plot(timek, data, label=r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")

    ax.set_xlim(view[:2])
    ax.ticklabel_format(style="sci", scilimits=(0, 0), axis="y")
    ax.grid(True)
    ax.set_xlabel(xlbl)
    ax.set_ylabel(r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.set_title(r"Energy drift of the wavepacket $\Psi$")
    fig.savefig(os.path.join(path, "energy_drift_block" + str(blockid) + "_lin" + GD.output_format))
    close(fig)


    fig = figure()
    ax = fig.gca()

    ax.semilogy(timek, data, label=r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")

    ax.set_xlim(view[:2])
    ax.grid(True)
    ax.set_xlabel(xlbl)
    ax.set_ylabel(r"$|E_O^0 - \left( E_k^0 + E_p^0 \right) |$")
    ax.set_title(r"Energy drift of the wavepacket $\Psi$")
    fig.savefig(os.path.join(path, "energy_drift_block" + str(blockid) + "_log" + GD.output_format))
    close(fig)