示例#1
0
def train_sckit_dirregression(architecture, config, runconfig):
    """
    Training process for architecture with direct regression of ahead time steps

    :return:
    """

    if type(config['data']['ahead']) == list:
        iahead, sahead = config['data']['ahead']
    else:
        iahead, sahead = 1, config['data']['ahead']

    lresults = []
    for ahead in range(iahead, sahead + 1):

        if runconfig.verbose:
            print(
                '************************************************************')
            print(f'Steps Ahead = {ahead} ')

        # Dataset
        dataset = Dataset(config=config['data'], data_path=wind_data_path)
        dataset.generate_dataset(ahead=ahead,
                                 mode=architecture.data_mode,
                                 remote=runconfig.remote)
        train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices(
        )

        ############################################
        # Model

        arch = architecture(config, runconfig)
        arch.generate_model()

        if runconfig.verbose:
            arch.summary()
            dataset.summary()
            print()

        ############################################
        # Training
        arch.train(train_x, train_y, val_x, val_y)

        ############################################
        # Results
        if 'descale' not in config['training'] or config['training']['descale']:
            lresults.append([ahead] + arch.evaluate(
                val_x, val_y, test_x, test_y, scaler=dataset.scaler))
        else:
            lresults.append([ahead] +
                            arch.evaluate(val_x, val_y, test_x, test_y))

        print(strftime('%Y-%m-%d %H:%M:%S'))

        if config is not None:
            updateprocess(config, ahead)

    arch.log_result(lresults)

    return lresults
示例#2
0
def train_sckit_sequence2sequence(architecture, config, runconfig):
    """
    Training process for architecture with direct regression of ahead time steps
    :return:
    """

    ahead = config['data']['ahead'] if (type(config['data']['ahead']) == list) else [1, config['data']['ahead']]
    if type(config['data']['ahead']) == list:
        iahead, sahead = config['data']['ahead']
    else:
        iahead, sahead = 1, config['data']['ahead']

    # lresults = []


    # Dataset
    dataset = Dataset(config=config['data'], data_path=wind_data_path)
    dataset.generate_dataset(ahead=ahead, mode=architecture.data_mode, remote=runconfig.remote)
    train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices()

    ############################################
    # Model

    arch = architecture(config, runconfig)
    arch.generate_model()

    if runconfig.verbose:
        arch.summary()
        dataset.summary()
        print()

    ############################################
    # Training
    arch.train(train_x, train_y, val_x, val_y)

    ############################################
    saverrors = None
    print('scikit')
    print(config['training'])
    print(config['training']['saverrors'])
    
    if 'saverrors' in config['training'] and config['training']['saverrors']:
 #      saverrors = f'-{ahead[0]}-{ahead[1]}-R{iter}' ¿?por que no va?
       saverrors = f'-{ahead[0]}-{ahead[1]}'
    # Results
    if 'descale' not  in config['training'] or config['training']['descale']:
        lresults = arch.evaluate(val_x, val_y, test_x, test_y, scaler=dataset.scaler,save_errors=saverrors)
    else:
        lresults = arch.evaluate(val_x, val_y, test_x, test_y, save_errors=saverrors)

    print(strftime('%Y-%m-%d %H:%M:%S'))

    if config is not None:
        updateprocess(config, ahead)

    arch.log_result(lresults)

    return lresults
示例#3
0
def train_persistence(architecture, config, runconfig):
    """
    Training process for architecture with direct regression of ahead time steps

    :return:
    """

    if type(config['data']['ahead']) == list:
        iahead, sahead = config['data']['ahead']
    else:
        iahead, sahead = 1, config['data']['ahead']

    lresults = []
    for ahead in range(iahead, sahead + 1):

        if runconfig.verbose:
            print(
                "-----------------------------------------------------------------------------"
            )
            print(f"Steps Ahead = {ahead}")

        # Dataset
        dataset = Dataset(config=config['data'], data_path=wind_data_path)
        dataset.generate_dataset(ahead=[ahead, ahead],
                                 mode=architecture.data_mode,
                                 remote=runconfig.remote)
        train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices(
        )

        # Architecture
        arch = architecture(config, runconfig)

        if runconfig.verbose:
            dataset.summary()

        if 'descale' not in config['training'] or config['training']['descale']:
            lresults.append([ahead] + arch.evaluate(
                val_x, val_y, test_x, test_y, scaler=dataset.scaler))
        else:
            lresults.append([ahead] +
                            arch.evaluate(val_x, val_y, test_x, test_y))

        print(strftime('%Y-%m-%d %H:%M:%S'))

        # Update result in db
        if config is not None:
            updateprocess(config, ahead)

        del dataset

    arch.log_result(lresults)
    return lresults
示例#4
0
def train_sckit_sequence2sequence(architecture, config, runconfig):
    """
    Training process for architecture with direct regression of ahead time steps

    :return:
    """

    ahead = config['data']['ahead'] if (type(config['data']['ahead']) == list) else [1, config['data']['ahead']]
    if type(config['data']['ahead']) == list:
        iahead, sahead = config['data']['ahead']
    else:
        iahead, sahead = 1, config['data']['ahead']

    # lresults = []


    # Dataset
    dataset = Dataset(config=config['data'], data_path=wind_data_path)
    dataset.generate_dataset(ahead=ahead, mode=architecture.data_mode, remote=runconfig.remote)
    train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices()

    ############################################
    # Model

    arch = architecture(config, runconfig)
    arch.generate_model()

    if runconfig.verbose:
        arch.summary()
        dataset.summary()
        print()

    ############################################
    # Training
    arch.train(train_x, train_y, val_x, val_y)

    ############################################
    # Results
    lresults = arch.evaluate(val_x, val_y, test_x, test_y)

    print(strftime('%Y-%m-%d %H:%M:%S'))

    if config is not None:
        updateprocess(config, ahead)

    arch.log_result(lresults)

    return lresults
示例#5
0
        "datasize": 40912,
        "testsize": 20456,
        "dataset": 0,
        "lag": 48,
        "ahead": [1, 12]
    }

    mode = 's2s'
    iahead = 1
    fahead = 12

    dataset = Dataset(config=data, data_path=wind_data_path)

    dataset.generate_dataset(ahead=[iahead, fahead], mode=mode)

    print(dataset.summary())

    train_x = dataset.train_x
    train_x = train_x.reshape(
        (train_x.shape[0], train_x.shape[1] * train_x.shape[2]))
    train_y = dataset.train_y
    train_y = train_y.reshape((train_y.shape[0], train_y.shape[1]))

    print(train_x.shape, train_y.shape)
    tree = KDTree(train_x, leaf_size=1)
    nneigh = 20
    for s in range(train_x.shape[0]):
        # radius = 0.3
        # neigh = tree.query_radius(train_x[s].reshape(1, -1), r=radius, count_only=False, return_distance=True,
        #                               sort_results=True)
        #
示例#6
0
def train_sequence2sequence_tf(architecture, config, runconfig):
    """
    Training process for sequence 2 sequence architectures with teacher forcing/attention

    :param architecture:
    :param config:
    :param runconfig:
    :return:
    """
    ahead = config['data']['ahead']

    if not type(ahead) == list:
        ahead = [1, ahead]

    dataset = Dataset(config=config['data'], data_path=wind_data_path)
    if not dataset.is_teacher_force():
        raise NameError("S2S teacher force: invalid data matrix")

    dataset.generate_dataset(ahead=ahead, mode=architecture.data_mode, remote=runconfig.remote)

    # Reorganize data for teacher forcing
    # dataset.teacher_forcing()

    if 'iter' in config['training']:
        niter = config['training']['iter']
    else:
        niter = 1

    if type(ahead) == list:
        odimensions = ahead[1] - ahead[0] + 1
    else:
        odimensions = ahead

    lresults = []
    for iter in range(niter):
        train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices()
        if type(train_x) != list:
            config['idimensions'] = train_x.shape[1:]
        else:
            config['idimensions'] = [d.shape[1:] for d in train_x]

        config['odimensions'] = odimensions
        arch = architecture(config, runconfig)

        if runconfig.multi == 1:
            arch.generate_model()
        else:
            with tf.device('/cpu:0'):
                arch.generate_model()

        if runconfig.verbose:
            arch.summary()
            arch.plot()
            dataset.summary()
            print()

        ############################################
        # Training


        arch.train(train_x, train_y, val_x, val_y)

        ############################################
        # Results

        lresults.extend(arch.evaluate(val_x, val_y, test_x, test_y))

        print(strftime('%Y-%m-%d %H:%M:%S'))

        arch.save('-A%d-%d-R%02d' % (ahead[0], ahead[1], iter))

    arch.log_result(lresults)

    return lresults
示例#7
0
def train_dirregression(architecture, config, runconfig):
    """
    Training process for architecture with direct regression of ahead time steps

    :return:
    """

    if type(config['data']['ahead']) == list:
        iahead, sahead = config['data']['ahead']
    else:
        iahead, sahead = 1, config['data']['ahead']

    lresults = []
    if 'iter' in config['training']:
        niter = config['training']['iter']
    else:
        niter = 1

    for iter in range(niter):

        for ahead in range(iahead, sahead + 1):

            if runconfig.verbose:
                print('-----------------------------------------------------------------------------')
                print(f"Steps Ahead = {ahead}")

            # Dataset
            dataset = Dataset(config=config['data'], data_path=wind_data_path)
            dataset.generate_dataset(ahead=[ahead, ahead], mode=architecture.data_mode, remote=runconfig.remote)
            train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices()

            ############################################
            # Model
            config['idimensions'] = train_x.shape[1:]

            arch = architecture(config, runconfig)

            if runconfig.multi == 1:
                arch.generate_model()
            else:
                with tf.device('/cpu:0'):
                    arch.generate_model()

            if runconfig.verbose:
                arch.summary()
                arch.plot()
                dataset.summary()
                print()

            ############################################
            # Training
            arch.train(train_x, train_y, val_x, val_y)

            ############################################
            # Results

            lresults.append([ahead] + arch.evaluate(val_x, val_y, test_x, test_y))

            print(strftime('%Y-%m-%d %H:%M:%S'))

            # Update result in db
            if config is not None and not runconfig.proxy:
                from Wind.DataBaseConfigurations import updateprocess
                updateprocess(config, ahead)

            arch.save('-A%d-R%02d' % (ahead, iter))
            del dataset

    arch.log_result(lresults)

    return lresults
示例#8
0
def train_sequence2sequence(architecture, config, runconfig):
    """
    Training process for sequence 2 sequence architectures

    Mutihorizon MIMO/DIRJOINT strategy

    :param architecture:
    :param config:
    :param runconfig:
    :return:
    """

    ahead = config['data']['ahead'] if (type(config['data']['ahead']) == list) else [1, config['data']['ahead']]

    if 'iter' in config['training']:
        niter = config['training']['iter']
    else:
        niter = 1

    if type(ahead) == list:
        odimensions = ahead[1] - ahead[0] + 1
    else:
        odimensions = ahead

    # Dataset
    dataset = Dataset(config=config['data'], data_path=wind_data_path)
    dataset.generate_dataset(ahead=ahead, mode=architecture.data_mode, remote=runconfig.remote)
    train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices()

    if type(train_x) != list:
        config['idimensions'] = train_x.shape[1:]
    else:
        config['idimensions'] = [d.shape[1:] for d in train_x]
    config['odimensions'] = odimensions

    lresults = []
    for iter in range(niter):

        arch = architecture(config, runconfig)

        if runconfig.multi == 1:
            arch.generate_model()
        else:
            with tf.device('/cpu:0'):
                arch.generate_model()

        if runconfig.verbose:
            arch.summary()
            arch.plot()
            dataset.summary()
            print()

        ############################################
        # Training
        arch.train(train_x, train_y, val_x, val_y)

        ############################################
        # Results

        lresults.extend(arch.evaluate(val_x, val_y, test_x, test_y))

        print(strftime('%Y-%m-%d %H:%M:%S'))

        arch.save(f'-{ahead[0]}-{ahead[1]}-R{iter}')

    arch.log_result(lresults)

    return lresults
示例#9
0
def train_recursive_multi_sequence2sequence(architecture, config, runconfig):
    """
    Training process for sequence 2 sequence architectures with multi step recursive training

    :param architecture:
    :param config:
    :param runconfig:
    :return:
    """
    if type(config['data']['ahead']) == list:
        iahead, sahead = config['data']['ahead']
    else:
        iahead, sahead = 1, config['data']['ahead']

    slice = config['data']['slice']

    if 'iter' in config['training']:
        niter = config['training']['iter']
    else:
        niter = 1

    lresults = []
    lmodels = []
    steps = [[i,j] for i,j in zip(range(iahead, sahead+1, slice), range(slice, sahead+slice+1,slice))]
    steps[-1][1] = sahead

    ### Accumulated recursive predictions for train, validation and test
    rec_train_pred_x = None
    rec_val_pred_x = None
    rec_test_pred_x = None

    for iter in range(niter):
        dataset = Dataset(config=config['data'], data_path=wind_data_path)
        dataset.generate_dataset(ahead=[iahead, sahead], mode=architecture.data_mode, remote=runconfig.remote)
        dataset.summary()
        train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices()

        for recit, ahead in enumerate(steps):
            if runconfig.verbose:
                print('-----------------------------------------------------------------------------')
                print(f"Steps Ahead = {ahead}")

            # Dataset (the y matrices depend on the slice used for prediction


            ############################################
            # Model

            config['idimensions'] = train_x.shape[1:]
            config['odimensions'] = ahead[1] - ahead[0] + 1
            # Dimensions for the recursive input

            config['rdimensions'] = recit * slice

            print(f"{config['idimensions']} {config['odimensions']} {config['rdimensions']}")

            # For evaluating we need to pass the range of columns of the current iteration
            nconfig = deepcopy(config)
            nconfig['data']['ahead'] = ahead
            arch = architecture(nconfig, runconfig)

            if runconfig.multi == 1:
                arch.generate_model()
            else:
                with tf.device('/cpu:0'):
                    arch.generate_model()

            if runconfig.verbose:
                arch.summary()
                arch.plot()
                dataset.summary()
                print()

            ############################################
            # Training
            if config['rdimensions'] == 0:
                arch.train(train_x, train_y[:,ahead[0]-1:ahead[1]], val_x, val_y[:,ahead[0]-1:ahead[1]])
            else:
                # Train using the predictions of the previous iteration
                arch.train([train_x, rec_train_pred_x], train_y[:,ahead[0]-1:ahead[1]],
                           [val_x, rec_val_pred_x], val_y[:,ahead[0]-1:ahead[1]])

            ############################################
            # Results and Add the new predictions to the saved ones

            if config['rdimensions'] == 0:
                lresults.extend(arch.evaluate(val_x, val_y, test_x, test_y))
                rec_train_pred_x = arch.predict(train_x)
                rec_val_pred_x = arch.predict(val_x)
                rec_test_pred_x = arch.predict(test_x)
                print(f"{train_x.shape} {val_x.shape} {test_x.shape}")
                print(f"{rec_train_pred_x.shape} {rec_val_pred_x.shape} {rec_test_pred_x.shape}")
            else:
                lresults.extend(arch.evaluate([val_x, rec_val_pred_x], val_y,
                                              [test_x, rec_test_pred_x], dataset.test_y))
                rec_train_pred_x = np.concatenate((rec_train_pred_x, arch.predict([train_x, rec_train_pred_x])), axis=1)
                rec_val_pred_x = np.concatenate((rec_val_pred_x, arch.predict([val_x, rec_val_pred_x])), axis=1)
                rec_test_pred_x = np.concatenate((rec_test_pred_x, arch.predict([test_x, rec_test_pred_x])), axis=1)
                print(f"{rec_train_pred_x.shape} {rec_val_pred_x.shape} {rec_test_pred_x.shape}")

            print(strftime('%Y-%m-%d %H:%M:%S'))

            arch.save(f"-{ahead[0]}-{ahead[1]}-R{iter:02d}")

    arch.log_result(lresults)

    return lresults
示例#10
0
def train_gradient_boosting_sequence2sequence(architecture, config, runconfig):
    """
    Training process for sequence 2 sequence architectures

    Mutihorizon MIMO/DIRJOINT strategy plus gradient boosting

    Generates a sequence of models that train over the difference of the previous prediction

    :param architecture:
    :param config:
    :param runconfig:
    :return:
    """

    ahead = config['data']['ahead'] if (type(
        config['data']['ahead']) == list) else [1, config['data']['ahead']]

    if 'iter' in config['training']:
        niter = config['training']['iter']
    else:
        niter = 1

    if type(ahead) == list:
        odimensions = ahead[1] - ahead[0] + 1
    else:
        odimensions = ahead

    # Dataset
    dataset = Dataset(config=config['data'], data_path=wind_data_path)
    dataset.generate_dataset(ahead=ahead,
                             mode=architecture.data_mode,
                             remote=runconfig.remote)
    train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices(
    )

    if type(train_x) != list:
        config['idimensions'] = train_x.shape[1:]
    else:
        config['idimensions'] = [d.shape[1:] for d in train_x]
    config['odimensions'] = odimensions

    lresults = []
    for iter in range(niter):

        arch = architecture(config, runconfig)

        if runconfig.multi == 1:
            arch.generate_model()
        else:
            with tf.device('/cpu:0'):
                arch.generate_model()

        if runconfig.verbose:
            arch.summary()
            arch.plot()
            dataset.summary()
            print()

        ############################################
        # Training

        # Training using gradient boosting (kindof)
        # Generate a bunch of models
        boost_train_pred = []
        boost_val_pred = []
        boost_test_pred = []
        n_train_y = train_y
        n_val_y = val_y
        n_test_y = test_y
        alpha = config['arch']['alpha']
        decay = config['arch']['decay']
        for nm in range(config['arch']['nmodels']):
            arch.train(train_x, n_train_y, val_x, n_val_y)

            # Prediction of the current model
            boost_train_pred.append(arch.predict(train_x))
            boost_val_pred.append(arch.predict(val_x))
            boost_test_pred.append(arch.predict(test_x))

            # Compute the prediction of the combination of models
            # Prediction of the first model
            boost_train_predict_y = boost_train_pred[0]
            boost_val_predict_y = boost_val_pred[0]
            boost_test_predict_y = boost_test_pred[0]
            for m in range(1, len(boost_train_pred)):
                boost_train_predict_y += (alpha * boost_train_pred[m])
                boost_val_predict_y += (alpha * boost_val_pred[m])
                boost_test_predict_y += (alpha * boost_test_pred[m])

            # Residual of the prediction for the next step
            n_train_y = train_y - boost_train_predict_y
            n_val_y = val_y - boost_val_predict_y
            # print(ErrorMeasure().compute_errors(val_y[:, 0], boost_val_predict_y[:, 0], test_y[:, 0], boost_test_predict_y[:, 0]))
            alpha *= decay

            # Reset the model
            arch = architecture(config, runconfig)
            if runconfig.multi == 1:
                arch.generate_model()
            else:
                with tf.device('/cpu:0'):
                    arch.generate_model()
            # For now the model is not saved
            arch.save(f'-{ahead[0]}-{ahead[1]}-R{nm}')

        ############################################
        # Results

        # Maintained to be compatible with old configuration files
        if type(config['data']['ahead']) == list:
            iahead = config['data']['ahead'][0]
            ahead = (config['data']['ahead'][1] -
                     config['data']['ahead'][0]) + 1
        else:
            iahead = 1
            ahead = config['data']['ahead']

        itresults = []

        for i, p in zip(range(1, ahead + 1),
                        range(iahead, config['data']['ahead'][1] + 1)):

            if 'descale' not in config['training'] or config['training'][
                    'descale']:
                itresults.append([p] + ErrorMeasure().compute_errors(
                    val_y[:, i - 1],
                    boost_val_predict_y[:, i - 1],
                    test_y[:, i - 1],
                    boost_test_predict_y[:, i - 1],
                    scaler=dataset.scaler))
            else:
                itresults.append([p] + ErrorMeasure().compute_errors(
                    val_y[:, i - 1], boost_val_predict_y[:, i - 1],
                    test_y[:, i - 1], boost_test_predict_y[:, i - 1]))

        lresults.extend(itresults)

        print(strftime('%Y-%m-%d %H:%M:%S'))

    arch.log_result(lresults)

    return lresults
示例#11
0
def train_sjoint_sequence2sequence(architecture, config, runconfig):
    """
    Training process for architecture with multiple blocks of horizons

    Multihorizon SJOINT strategy

    The training is done separately for blocks of horizons (if block size is 1 this is dirregression)

    :return:
    """

    if type(config['data']['ahead']) == list:
        iahead, sahead = config['data']['ahead']
    else:
        iahead, sahead = 1, config['data']['ahead']

    # Number of consecutive horizon elements to join in a prediction
    slice = config['data']['slice']

    # if (sahead - (iahead-1)) % slice != 0:
    #     raise NameError("SJOINT: slice has to be a divisor of the horizon length")

    lresults = []
    if 'iter' in config['training']:
        niter = config['training']['iter']
    else:
        niter = 1

    lmodels = []
    steps = [[
        i, j
    ] for i, j in zip(range(iahead, sahead +
                            1, slice), range(slice, sahead + slice + 1, slice))
             ]
    steps[-1][1] = sahead

    for iter in range(niter):
        # Loads the dataset once and slices the y matrix for training and evaluation
        dataset = Dataset(config=config['data'], data_path=wind_data_path)
        dataset.generate_dataset(ahead=[iahead, sahead],
                                 mode=architecture.data_mode,
                                 remote=runconfig.remote)

        train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices(
        )

        for recit, ahead in enumerate(steps):
            if runconfig.verbose:
                print(
                    '-----------------------------------------------------------------------------'
                )
                print(f"Steps Ahead = {ahead}")

            ############################################
            # Model
            config['idimensions'] = train_x.shape[1:]
            config['odimensions'] = ahead[1] - ahead[0] + 1

            nconfig = deepcopy(config)
            nconfig['data']['ahead'] = ahead
            arch = architecture(nconfig, runconfig)

            if runconfig.multi == 1:
                arch.generate_model()
            else:
                with tf.device('/cpu:0'):
                    arch.generate_model()

            if runconfig.verbose:
                arch.summary()
                arch.plot()
                dataset.summary()
                print()

            ############################################
            # Training with the current slice
            arch.train(train_x, train_y[:, ahead[0] - 1:ahead[1]], val_x,
                       val_y[:, ahead[0] - 1:ahead[1]])
            ############################################
            # Results
            if 'descale' not in config['training'] or config['training'][
                    'descale']:
                lresults.extend(
                    arch.evaluate(val_x,
                                  val_y[:, ahead[0] - 1:ahead[1]],
                                  test_x,
                                  test_y[:, ahead[0] - 1:ahead[1]],
                                  scaler=dataset.scaler))
            else:
                lresults.extend(
                    arch.evaluate(val_x, val_y[:, ahead[0] - 1:ahead[1]],
                                  test_x, test_y[:, ahead[0] - 1:ahead[1]]))

            print(strftime('%Y-%m-%d %H:%M:%S'))

            # Update result in db
            if config is not None and not runconfig.proxy:
                from Wind.DataBaseConfigurations import updateprocess
                updateprocess(config, ahead)

            arch.save(f"-{ahead[0]}-{ahead[1]}-S{recit:02d}-R{iter:02d}")

    arch.log_result(lresults)

    return lresults
示例#12
0
def train_sequence2sequence(architecture, config, runconfig):
    """
    Training process for sequence 2 sequence architectures
    Mutihorizon MIMO/DIRJOINT strategy
    :param architecture:
    :param config:
    :param runconfig:
    :return:
    """

    ahead = config['data']['ahead'] if (type(config['data']['ahead']) == list) else [1, config['data']['ahead']]
    #if 'aggregate' in config['data']:
    #    step = config['data']['aggregate']['step']
    #    ahead = [ahead[0], ahead[1]//step]

    if 'iter' in config['training']:
        niter = config['training']['iter']
    else:
        niter = 1

    if type(ahead) == list:
        odimensions = ahead[1] - ahead[0] + 1
        if 'aggregate' in config['data'] and 'y' in config['data']['aggregate']:
            step = config['data']['aggregate']['y']['step']
            odimensions //= step
    else:
        odimensions = ahead

    # Dataset
    dataset = Dataset(config=config['data'], data_path=wind_data_path)
    dataset.generate_dataset(ahead=ahead, mode=architecture.data_mode, remote=runconfig.remote)
    train_x, train_y, val_x, val_y, test_x, test_y = dataset.get_data_matrices()
    print('shapes0', train_x.shape, train_y.shape, val_x.shape, val_y.shape, test_x.shape, test_y.shape)

    if type(train_x) != list:
        config['idimensions'] = train_x.shape[1:]
    else:
        config['idimensions'] = [d.shape[1:] for d in train_x]
    config['odimensions'] = odimensions

    lresults = []
    for iter in range(niter):

        arch = architecture(config, runconfig)

        if runconfig.multi == 1:
            arch.generate_model()
        else:
            with tf.device('/cpu:0'):
                arch.generate_model()

        if runconfig.verbose:
            arch.summary()
            arch.plot()
            dataset.summary()
            print()

        ############################################
        # Training
        arch.train(train_x, train_y, val_x, val_y)
        
        ############################################
        # Results
        saverrors = None
        
        if 'saverrors' in config['training'] and config['training']['saverrors']:
            saverrors = f'-{ahead[0]}-{ahead[1]}-R{iter}'
        if 'descale' not in config['training'] or config['training']['descale']:
            print('pollo',train_x, train_y, val_x, val_y,dataset.scaler)
            lresults.extend(arch.evaluate(val_x, val_y, test_x, test_y, scaler=dataset.scaler, save_errors=saverrors))
        else:
            
            lresults.extend(arch.evaluate(val_x, val_y, test_x, test_y, save_errors=saverrors))

        print(strftime('%Y-%m-%d %H:%M:%S'))

        arch.save(f'-{ahead[0]}-{ahead[1]}-R{iter}')

    arch.log_result(lresults)

    return lresults